VERTICAL STEAM AND HOT WATER UNIT HEATERS

ATTENTION: READ THIS MANUAL AND ALL LABELS ATTACHED TO THE UNIT CAREFULLY BEFORE ATTEMPTING TO INSTALL, OPERATE OR SERVICE THESE UNITS! CHECK UNIT DATA PLATE FOR TYPE OF GAS AND ELECTRICAL SPECIFICATIONS AND MAKE CERTAIN THAT THESE AGREE WITH THOSE AT POINT OF INSTALLATION. RECORD THE UNIT MODEL AND SERIAL No.(s) IN THE SPACE PROVIDED. RETAIN FOR FUTURE REFERENCE.

Model No.

Serial No.

AWARNING Improper installation, adjustment, alteration, service or maintenance can cause property damage, injury or death. Read the installation, operating and maintenance instructions thoroughly before installing or servicing this equipment.

INSTALLER'S RESPONSIBILITY

Installer Please Note: This equipment has been tested and inspected. It has been shipped free from defects from our factory. However, during shipment and installation, problems such as loose wires, leaks or loose fasteners may occur. It is the installer's responsibility to inspect and correct any problems that may be found.

RECEIVING INSTRUCTIONS

Inspect shipment immediately when received to determine if any damage has occurred to the unit during shipment. After the unit has been uncrated, check for any visible damage to the unit. Turn fan by hand to determine if damage has occurred. If any damage is found, the consignee should sign the bill of lading indicating such damage and immediately file claim for damage with the transportation company.

TABLE OF CONTENTS

GENERAL SAFETY INFORMATION	ELECTRICAL CONNECTIONS
SPECIFICATIONS	Operation20
Dimensional Data4	Thermostat Wiring and Location20
Mounting Specifications3, 4, 7, 15-18, 27	Motors20
Steam Performance Data5, 6	WIRING INSTALLATION21, 22
Steam Calculations & Correction Factors7	OPTIONS23
Hot Water Performance Data8-11	MAINTENANCE24
Hot Water Calculations & Correction Factors 12	TROUBLESHOOTING GUIDE25
Technical Data13	INSPECTION SHEET25
Motor Data14	WARRANTY26
INSTALLATION	OSHA FAN GUARD/LOUVER CONE DIFFUSER
Locating Units15-18	INSTALLATION27
Piping19	

NOTICE: It is the owner's responsibility to provide any scaffolding or other apparatus required to perform emergency service or annual/periodic maintenance to this equipment.

DESCRIPTION

Vertical hydronic unit heaters are designed for installation requiring down flow air delivery, offered in 15 sizes ranging from 41,300 to 705,000 BTU/Hr., and use with steam or hot water. Low output (increased airflow) units are available

for high ceiling applications. The designs are certified by ETL to CSA-C22.2, UL1995, and UL 60335-2-40. **Do not alter these units in any way and do not attach any ductwork to these units.** If you have any questions after reading this manual, contact the manufacturer.

Figure 1

Figure 2

The following terms are used throughout this manual, in addition to ETL requirements, to bring attention to the presence of potential hazards or to important information concerning the product:

A DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death, serious injury or substantial property damage.

▲ WARNING Indicates an imminently hazardous situation which, if not avoided, could result in death, serious injury or substantial property damage.

A CAUTION Indicates an imminently hazardous situation which, if not avoided, may result in minor injury or property damage.

NOTICE: Used to notify of special instructions on installation, operation or maintenance which are important to equipment but not related to personal injury hazards.

GENERAL SAFETY INFORMATION

A WARNING Failure to comply with the general safety information may result in extensive property damage, severe personal injury or death.

A WARNING Do not alter the unit heater in any way or damage to the unit and/or severe personal injury or death may occur!

A WARNING Disconnect all power supplies before installing or servicing the heater. If the power disconnect is out of sight, lock it in the open position and tag it to prevent unexpected application of power. Failure to do so could result in fatal electric shock, or severe personal injury.

A CAUTION Ensure that all power sources conform to the requirements of the unit heater or damage to the unit will result!

Follow installation instructions CAREFULLY to avoid creating unsafe conditions. All external wiring must conform to applicable current local codes, and to the latest edition of the National Electric Code, ANSI/NFPA No. 70. In Canada, all external wiring must conform to the Canadian Electric Code, Part 1 CSA Standard C22.1. All wiring should be done and checked by a qualified electrician, using copper wire only. All steam or water connections should be made and leak-tested by a suitably qualified individual, per instructions in this manual. Also follow procedures listed on the "Unit Equipment Start-Up Sheet" located in this manual.

Make certain that the power source conforms to the electrical requirements of the heater.

A WARNING Do not depend upon a thermostat or other switch as sole means of disconnecting power when installing or servicing heater. Always disconnect power at main circuit breaker as described above. Failure to do so could result in fatal electric shock.

Special attention must be given to any grounding information pertaining to this heater. To reduce the risk of electrocution, the heater must be securely and adequately grounded. This should be accomplished by connecting a grounded conductor between the service panel and the heater. To ensure a proper ground, the grounding means must be tested by a qualified electrician. Do not insert fingers or foreign objects into the heater or its air moving device. Do not block or tamper with the heater in any manner while in operation or just after it has been turned off, as some parts may be hot enough to cause injury.

The appliance is not to be used by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction. Children being supervised should not play with the appliance.

It is recommended to install a shutoff switch in the electrical power lines at the heater. Whenever a unit is serviced, shut power off to the unit.

Since these units are installed in most instances higher than 8 feet, proper type of ladders or scaffolding should be used, as set up by OSHA requirements; see notice on page 2. Never place a ladder against the unit for support.

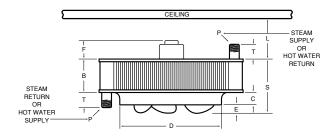
In industrial plants, professional maintenance crews should service this equipment.

All Vertical Unit Heaters are shipped fully assembled and may be used for steam or hot water applications. Fans are balanced and motors are prelubricated. Coils are factory tested at 400 PSIG (2758 kPa) under water.

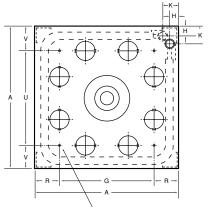
- USA: Under maximum conditions, coils are rated for 75 PSI (517 kPa) for steam pressure and up to 225 PSI (1551 kPa) or 325°F (162.8°C) for hot water.
- Canada: Under maximum conditions, coils are rated for 15 PSI (103 kPa) for steam pressure and up to 225 PSI (1551 kPa) or 325°F (162.8°C) for hot water.

Each unit is packaged individually and marked for proper identification. Use normal care in handling and during installation to prevent damage to the coils fins, fan and casing. Do not set Vertical Unit Heater on floor with the weight of the unit resting against the fan blades. In this position, the blades may be damaged.

	ecified, the following conversions culating SI unit measurements:
1 foot = 0.305 m	1 inch water column = 0.249 kPa
1 inch = 25.4 mm	meter/second = FPM ÷ 196.8
1 psig = 6.894 kPa	liter/second = CFM x 0.472
1 pound = 0.453 kg	1000 Btu per hour = 0.293 kW
1 gallon = 3.785 L	1000 Btu/Cu. Ft. = 37.5 MJ/m ³
	1 cubic foot = 0.028 m^3


To meet ETL and OSHA requirements, units mounted below 8 feet from the floor must be equipped with an OSHA fan guard.

DIMENSIONAL DATA


Figure 3 - Models 40-77

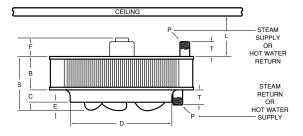


Figure 4 - Models 104-700

(4) MOUNTING HOLES 3/8- 16 FOR MODELS 104-367 THREAD TAPS 1/2- 13 FOR MODELS 495-700

Table 1 – Figure 3 Roughing in Dimensional Data – Model Size 40-77

	Fan	Α	В	C	D	E	F	G	Н	K	L	Р	R	S	Т	U	V	Approx.
Unit	Dia.										Min	NPT						Ship Wt.
Capacity	inches	lbs																
(MBH)	(mm)	(kg)																
40	11-1/4	18-1/4	4-5/8	1-1/4	11-3/4	3/4	4	11	1-3/8	1-7/8	7	1-1/2	3-5/8	6-5/8	2-3/4	11	3-5/8	32
40	(286)	(464)	(117)	(32)	(298)	(19)	(102)	(279)	(35)	(48)	(178)	(38)	(92)	(168)	(70)	(279)	(92)	(15)
62	13-1/2	21-1/4	4-5/8	1-5/8	14	1	4	14	1-3/8	1-7/8	7	1-1/2	3-5/8	7-1/8	2-3/4	14	3-5/8	40
62	(343)	(540)	(117)	(41)	(356)	(25)	(102)	(356)	(35)	(48)	(178)	(38)	(92)	(181)	(70)	(356)	(92)	(18)
77	13-1/2	21-1/4	6-1/8	1-5/8	14	1	3	14	1-3/8	1-7/8	7	1-1/2	3-5/8	8-5/8	2-3/4	14	3-5/8	43
//	(343)	(540)	(156)	(41)	(356)	(25)	(76)	(356)	(35)	(48)	(178)	(38)	(92)	(219)	(70)	(356)	(92)	(20)

Table 2 - Figure 4 Roughing in Dimensional Data – Model Size 104-700

Unit	Fan Dia.	A	В	C	D	E	F	G	Н	К	L Min	P NPT	R	S	Т	U	V	Approx. Ship Wt.
Capacity	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	lbs
(MBH)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	<u>(mm)</u>	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)
104	16-3/4 (425)	25-1/4 (641)	6-1/8 (156)	2 (51)	17-1/2 (445)	1-1/8 (29)	3 (76)	17 (432)	1-3/8 (35)	2-3/4 (70)	7 (178)	1-1/2 (38)	4-1/8 (105)	9-1/8 (232)	2-3/4 (70)	17 (432)	4-1/8 (105)	63 (29)
125	16-3/4 (425)	25-1/4 (641)	6-1/8 (156)	2 (51)	17-1/2 (445)	1-3/4 (44)	3 (76)	17 (432)	1-3/8 (35)	2-3/4 (70)	7 (178)	1-1/2 (38)	4-1/8 (105)	9-3/4 (248)	2-3/4 (70)	17 (432)	4-1/8 (105)	64 (29)
144	19-3/4 (502)	29-1/2 (749)	6-1/8 (156)	2-3/8 (60)	20-5/8 (524)	1-1/4 (32)	4 (102)	20-1/2 (521)	1-3/4 (44)	3-1/2 (89)	7 (178)	2 (51)	4-1/2 (114)	9-5/8 (244)	2-3/4 (70)	20-1/2 (521)	4-1/2 (114)	80 (36)
164	19-3/4 (502)	29-1/2 (749)	6-1/8 (156)	2-3/8 (60)	20-5/8 (524)	1-3/4 (44)	4 (102)	20-1/2 (521)	1-3/4 (44)	3-1/2 (89)	7 (178)	2 (51)	4-1/2 (114)	10-1/8 (257)	2-3/4 (70)	20-1/2 (521)	4-1/2 (114)	80 (36)
200	19-3/4 (502)	29-1/2 (749)	7-5/8 (194)	2-3/8 (60)	20-5/8 (524)	2 (51)	4 (102)	20-1/2 (521)	1-3/4 (44)	3-1/2 (89)	7 (178)	2 (51)	4-1/2 (114)	12 (305)	2-3/4 (70)	20-1/2 (521)	4-1/2 (114)	86 (39)
237	25-1/4 (641)	37-1/2 (953)	7-5/8 (194)	3 (76)	26-3/8 (670)	1 (25)	3-1/2 (89)	28 (711)	1-3/4 (44)	3-1/2 (89)	7 (178)	2 (51)	4-3/4 (121)	11-5/8 (295)	2-3/4 (70)	18 (457)	9-3/4 (248)	134 (61)
285	25-1/4 (641)	37-1/2 (953)	7-5/8 (194)	3 (76)	26-3/8 (670)	1-1/4 (32)	3-1/2 (89)	28 (711)	1-3/4 (44)	3-1/2 (89)	7 (178)	2 (51)	4-3/4 (121)	11-3/4 (298)	2-3/4 (70)	18 (457)	9-3/4 (248)	139 (63)
317	25-1/4 (641)	37-1/2 (953)	7-5/8 (194)	3 (76)	26-3/8 (670)	2-1/8 (54)	4 (102)	28 (711)	1-3/4 (44)	3-1/2 (89)	7 (178)	2 (51)	4-3/4 (121)	12-3/4 (324)	2-3/4 (70)	18 (457)	9-3/4 (248)	139 (63)
367	25-1/4 (641)	37-1/2 (953)	9-1/8 (232)	3 (76)	26-3/8 (670)	2 (51)	3-1/2 (89)	28 (711)	1-3/4 (44)	3-1/2 (89)	7 (178)	2 (51)	4-3/4 (121)	14-1/8 (359)	2-3/4 (70)	18 (457)	9-3/4 (248)	146 (66)
495	30-1/2 (775)	42 (1067)	9-1/8 (232)	3-1/2 (89)	31-1/4 (794)	1-5/8 (41)	3 (76)	30 (762)	2-1/4 (57)	4-1/4 (108)	7 (178)	2-1/2 (64)	6 (152)	14-1/4 (362)	3 (76)	30 (762)	6 (152)	294 (133)
585	30-1/2 (775)	42 (1067)	12-1/8 (308)	3-1/2 (89)	31-1/4 (794)	2-1/8 (54)	3 (76)	30 (762)	2-1/4 (57)	4-1/4 (108)	7 (178)	2-1/2 (64)	6 (152)	17-3/4 (451)	3 (76)	30 (762)	6 (152)	307 (139)
700	30-1/2 (775)	42 (1067)	13-5/8 (346)	3-1/2 (89)	31-1/4 (794)	3 (76)	4 (102)	30 (762)	2-1/4 (57)	4-1/4 (108)	7 (178)	2-1/2 (64)	6 (152)	20-1/4 (514)	3 (76)	30 (762)	6 (152)	366 (166)

STEAM PERFORMANCE DATA**

Table 3 - Standard Units

Unit	Output	Condensate	EDR	Final Air	Мо	tor	Nominal	Outlet Velocity	
Capacity (MBH)	BTU/HR (kW)	lbs/hr (kg/hr)	Sq. ft. (Sq. m)	Temp °F (°C)	HP† (kW)	RPM	CFM (m³/s)	FPM (m/s)	Sound Rating
	41,300	43	172	124		1550	595	877	
040 -	(12.1)	(19.5)	(16.0)	(51)	1/40		(.278)	(4.455)	
040 -	33,600	55	140	131	(.019)	1150	436	658	I
	(9.8)	(24.9)	(13.0)	(55)			(.203)	(3.343)	
	65,500	68	273	121		1550	989	1005	
000	(19.2)	(30.8)	(25.4)	(49)	1/20		(.462)	(5.105)	
062 -	52,800	55	220	129	(.037)	1150	706	727	II
	(15.5)	(24.9)	(20.5)	(54)			(.329)	(3.693)	
	80,600	83	336	122		1550	1200	1220	
077	(23.6)	(37.6)	(31.3)	(50)	1/20		(.560)	(6.198)	
077 -	65,100	67	271	130	(.037)	1150	858	894	II
	(19.1)	(30.4)	(25.2)	(54)			(.400)	(4.542)	
	101,800	106	424	123		1070	1490	980	
101	(29.8)	(48.0)	(39.4)	(51)	1/8		(.695)	(4.978)	
104 -	87,900	91	366	129	(.093)	850	1180	783	II
	(25.8)	(41.2)	(34.0)	(54)			(.551)	(3.978)	
105	124,400	129	518	124	1/6	1100	1790	1170	
125	(36.4)	(58.4)	(48.2)	(51)	(.124)		(.835)	(5.944)	
444	152,000	157	633	123	1/6	1100	2220	1045	
144	(44.5)	(71.1)	(58.9)	(51)	(.124)		(1.036)	(5.309)	
104	173,000	179	720	121	1/6	1100	2620	1230	1.7
164	(50.7)	(81.1)	(67.0)	(49)	(.124)		(1.223)	(6.248	IV
000	210,200	208	838	118	1/4	1100	3200	1495	
200	(61.6)	(94.2)	(78.0)	(48)	(.186)		(1.493)	(7.595)	
007	249,800	260	1040	115	1/4	1100	4180	1205	1.7
237	(73.2)	(117.8)	(96.7)	(46)	(.186)		(1.951)	(6.121)	IV
00F	283,800	294	1180	119	1/2	1100	4430	1275	11.7
285	(83.2)	(133.2)	(109.8)	(48)	(.373)		(2.067)	(6.477)	IV
017	333,400	345	1390	119	3/4	1140	5210	1500	11.7
317	(97.7)	(156.3)	(129.3)	(48)	(.559)		(2.431)	(7.620)	IV
007	386,000	400	1610	118	3/4	1140	6140	1770	
367	(113.1)	(181.2)	(149.8)	(48)	(.559)		(2.865)	(8.992)	IV
405	496,000	514	2070	117	1-1/2	1175	8020	1640	11.7
495	(145.3)	(232.8)	(192.6)	(47)	(1.119)		(3.743)	(8.331)	IV
FOF	585,000	605	2440	117	1-1/2	1175	9450	1930	
585	(171.4)	(274.1)	(227.0)	(47)	(1.119)		(4.410)	(9.804)	IV
700	705,000	729	2940	119	3	1165	11,000	2250	
700	(206.6)	(330.2)	(273.5)	(48)	(2.237)		(5.133)	(11.430)	IV

EDR = Equivalent Direct Radiation

NOTES:

Constant speed units are rated at capacities shown in regular type; capacities shown in italic faced type apply only to units with multi-speed motors.

** Performance data based on 2 lbs. steam pressure at heater with air entering @60°F.

To determine BTU per hour capacities at various steam pressures and entering air temperatures, use correction factors from Table 5. Final temperatures at new conditions can be calculated by applying basic formula.

STEAM PERFORMANCE DATA**

	0	Conderret		Final	Мо	otor	Nominal	Outlet	
Unit Capacity (MBH)	Output BTU/HR (kW)	Condensate Ibs/hr (kg/hr)	EDR Sq. ft. (Sq. m)	Air Temp °F °C	HP† (kW)	RPM	_ Nominal CFM (m³/s)	Velocity FPM (m/s)	Sound Rating
	34,800	36	145	108			668	950	
040L _	(10.2)	(16.3)	(13.5)	(42)	1/40	1550	(.312)	(4.826)	1
0102 _	26,000	27	108	111	(.019)		470	672	
	(7.6)	(12.2)	(10.0)	(44)		1150	(.219)	(3.414)	
	57,200	59	238	104			1200	1190	
062L _	(16.8)	(26.7)	(22.1)	(40)	1/20	1550	(.560)	(6.045)	1
0022 _	45,800	48	191	109	(.037)		862	858	
	(13.4)	(21.7)	(17.8)	(43)		1150	(.402)	(4.359)	
	68,000	71	283	106			1360	1350	
077L _	(19.9)	(32.2)	(26.3)	(41)	1/20	1550	(.635)	(6.858)	II
0112 _	55,000	57	229	111	(.037)		995	992	
	(16.1)	(25.8)	(21.3)	(44)		1150	(.464)	(5.039)	
	85,400	89	356	108			1640	1050	
104L _	(25.0)	(40.3)	(33.1)	(42)	1/8	1070	(.765)	(5.334)	11
	71,200	74	296	111	(.093)		1290	827	
	(20.9)	(33.5)	(27.5)	(44)		850	(.602)	(4.201)	
125L	111,000	115	462	107	1/6		2180	1390	
TLOL	(32.5)	(52.1)	(43.0)	(42)	(.124)	1100	(1.017)	(7.061)	
144L	125,000	130	524	109	1/6		2360	1080	
	(36.6)	(58.9)	(48.7)	(43)	(.124)	1100	(1.101)	(5.486)	
164L	149,000	154	620	107	1/6		2920	1340	IV
TOTE	(43.7)	(69.8)	(57.7)	(42)	(.124)	1100	(1.363)	(6.807)	
200L	176,800	183	736	108	1/4		3390	1560	
LOOL	(51.8)	(82.9)	(68.5)	(42)	(.186)	1100	(1.582)	(7.925)	
237L	214,900	224	895	104	1/4		4500	1270	IV
2072	(63.0)	(101.5)	(83.3)	(40)	(.186)	1100	(2.100)	(6.452)	
285L	251,800	260	1050	106	1/2		5040	1420	IV
LOOL	(73.8)	(117.8)	(97.7)	(41)	(.373)	1100	(2.352)	(7.214)	
317L	291,000	302	1210	107	3/4		5700	1610	IV
0172	(85.3)	(136.8)	(112.6)	(42)	(.559)	1140	(2.660)	(8.179)	
367L	344,000	356	1430	108	3/4		6600	1870	IV
0072	(100.8)	(161.3)	(133.0)	(42)	(.559)	1140	(3.080)	(9.500)	
495L	428,000	446	1785	102	1-1/2		9380	1860	IV
	(125.4)	(202.0)	(166.0)	(39)	(1.119)	1175	(4.377)	(9.449)	
585L	515,000	533	2140	106	1-1/2		10,300	2060	IV
COOL	(150.9)	(241.4)	(199.1)	(41)	(1.119)	1175	(4.807)	(10.465)	1 V
700L	620,000	642	2580	108	3		11,900	2380	IV
,000	(181.7)	(290.8)	(240.0)	(42)	(2.237)	1165	(5.553)	(12.090)	1 V

Table 4 - "Low Output" Standard Vertical Units with All Air Ports Open

EDR = Equivalent Direct Radiation

NOTES:

Constant speed units are rated at capacities shown in regular type; capacities shown in italic faced type apply only to units with multi-speed motors.

** Performance data based on 2 lbs. steam pressure at heater with air entering @60°F.

To determine BTU per hour capacities at various steam pressures and entering air temperatures, use correction factors from Table 5. Final temperatures at new conditions can be calculated by applying basic formula.

STEAM CALCULATIONS AND CORRECTION FACTORS

			EXAMPLE: – UNIT SIZE40 Steam Pressure10 PSI Entering Air Temp40°F
I.	CAPACITY A. For 2 lbs. steam, 60°F entering air	Read output directly from Table 3:41,300 BTU/HR.	
	B. For higher steam pressures and/or EAT's above or below 60°F	Multiply output from Table 3 by appropriate correction factor from Table 5 (below).	41,300x1.27=52,451BTU/HR.
Ш.	FINAL AIR TEMPERATURE A. For 2 lbs. steam, 60°F entering air	Read temperature directly from Table 3: 124°F.	
	B. For capacities calculated in IB (above)	$\frac{\text{Output from IB}}{1.085 \text{ x CFM from Table 3}} + \text{EAT} = \text{Final Air Temp}$	$\frac{52,451}{1.085\times595} + 40 = 121.0^{\circ}F$
III.	FINAL AIR VOLUME A. For 2 lbs.steam, 60°F entering air	460 + Final Air Temp from Table 3Nom. CFMFinal530xfrom=AirTable 3Volume	$\frac{460+124}{530} \times 595 = 655 \text{CFM}$
	B. For final air temperatures calculated In IIB (above)	460 + Final Air Temp from IIBNom. CFMFinal530xfrom=AirTable 3Volume	$\frac{460+121.0}{530} \times 595 = 652 \text{CFM}$
IV.	CONDENSATE PER HOUR A. For 2 lbs. steam, 60°F entering air	Read lbs.per hour from Table 3:43 LBS./HR.	
	B. For capacities calculated in IB (above)	Output from IB Latent Heat From Table 6 = lbs.per hour of condensate	$\frac{52,451}{953}$ = 55.0 LBS./HR.

TABLE 5 — STEAM CORRECTION FACTORS BASED ON 2 LBS. STEAM 60°F EAT

ENTERING AIR		STEAM F	PRESSURE	E — LBS P	ER SQUAF	RE INCH (S	ATURATED)		
TEMPERATURE °F (°C)	0 (.0)	2 (13.8)	5 (34.5)	10 (68.9)	15 (103.4)	20 (137.9)	30 (206.8)	40 (275.8)	50 (344.7)	75 (517.1)
30° (-1°)	1.18	1.22	1.27	1.34	1.40	1.45	1.53	1.61	1.67	1.79
40° (4°)	1.11	1.15	1.20	1.27	1.32	1.37	1.46	1.53	1.59	1.71
50° (10°)	1.03	1.07	1.12	1.19	1.25	1.30	1.39	1.46	1.52	1.64
60° (16°)	0.96	1.00	1.05	1.12	1.18	1.23	1.32	1.39	1.45	1.57
70° (21°)	0.90	0.93	0.98	1.05	1.11	1.16	1.25	1.32	1.38	1.49
80° (27°)	0.83	0.86	0.91	0.98	1.04	1.09	1.18	1.25	1.31	1.42
90° (32°)	0.76	0.80	0.85	0.91	0.97	1.02	1.11	1.18	1.24	1.36
100° (38°)	0.69	0.73	0.78	0.85	0.90	0.96	1.04	1.11	1.17	1.29

TABLE 6 - PROPERTIES OF SATURATED STEAM

		S	TEAM PRE	SSURE IN	LBS PER	SQUARE I	NCH GAUG	θE		
	0 (.0)	2 (13.8)	5 (34.5)	10 (68.9)	15 (103.4)	20 (137.9)	30 (206.8)	40 (275.8)	50 (344.7)	75 (517.1)
Steam	212.0	218.5	227.1	239.4	249.8	258.8	274.0	286.7	297.7	319.9
Temperature-°F (°C)	(100.0)	(103.6)	(108.4)	(115.2)	(121.0)	(126.0)	(134.4)	(141.5)	(147.6)	(159.9)
Latent Heat	970	966	961	953	946	940	929	920	912	891
of Steam-Btu/lbm (KJ/Kg)	(2256)	(2247)	(2235)	(2217)	(2200)	(2186)	(2161)	(2140)	(2121)	(2072)

NOTE 1: Ratings apply only to free inlet and discharge without diffusers.

NOTE 2: All motors are constant speed and operate at top speed as indicated in motor data. Sizes 40 through 104 can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Sizes 164 through 700 operate at constant speed as indicated in motor data. NOTE 3: For specific motor data refer to motor specifications in Tables 13 and 14.

NOTE 4: To correct for entering air temperatures, use 1° temperature rise for each foot in mounting height. As an example, 60°F air is required at work area (5 ft. above floor) units are to be mounted at (20 ft.) above floor. Mounting height (20 ft.) minus work height (5 ft.) equals differential (15 ft.) or, 15° rise in air temperature at unit air inlet. Correct for actual inlet air temperature of 75°F (60°F + 15°F = 75°F EAT) on Table 5.

Table 7 - Standard Output Units

Unit Capacity (MBH)	Water Temp Drop °F (°C)	Output MBH (kW)	Flow Rate GPM (L/s)	Pressure Drop ft/water (m/water)	Final Air Temp °F (°C)	Motor HP† (kW)	Motor RPM	Nominal CFM (m³/s)	Outlet Velocity FPM (m/s)	Sound Rating
	10°	28.8	5.93	.37	104.6°					
	<u>(5.6°)</u>	(8.4)	(.374)	(.113)	<u>(40.3°)</u>	1/10	4550	505	077	
040	20°	22.7	2.34	.06	95.2°	1/40	1550	595	877	I
	<u>(11.1°)</u> 30°	(6.7) 	<u>(.148)</u> 1.15	<u>(.018)</u> .02	<u>(35.1°)</u> 85.9°	(.019)		(.278)	(4.455)	
	(16.7°)	(4.9)	(.073)	.02	(29.9°)					
		22.9	4.71	.24	<u>(20.07)</u> 108.3°					
	(5.6°)	(6.7)	(.297)	(.073)	(42.4°)					
040*	20°	18.1	1.87	.04	98.3°	1/40	1150	436	658	1
040	(11.1°)	(5.3)	(.118)	(.012)	(36.8°)	(.019)		(.203)	(3.343)	1
	30°	13.4	.92	.01	88.4°	. ,		()	. ,	
	(16.7°)	(3.9)	(.058)	(.003)	<u>(31.3°)</u>					
	10°	48.1	9.92	1.05	104.8°					
	<u>(5.6°)</u>	(14.1)	(.626)	(.320)	<u>(40.4°)</u>					
062	20°	39.6	4.08	.19	96.9°	1/20	1550	989	1005	II
	<u>(11.1°)</u>	<u>(11.6)</u>	(.257)	(.058)	<u>(36.1°)</u>	(.037)		(.462)	(5.105)	
	30° (16.7°)	31.1 (9.1)	2.14 (.135)	.06 (.018)	89.0° (31.7°)					
	<u>(16.7°)</u> 10°	<u>(9.1)</u> 38.1	<u>(.135)</u> 7.85	.67	109.7°					
	(5.6)	(11.2)	(.495)	(.204)	(43.2°)					
000*	<u>20°</u>	31.5	<u>3.24</u>	.13	<u>101.1°</u>	1/20	1150	706	727	
062*	(11.1°)	(9.2)	(.204)	(.040)	(38.4°)	(.037)	1100	(.329)	(3.693)	II
	30°	24.8	1.71	.04	92.4°	(1001)		(10=0)	()	
	(16.7°)	(7.3)	(.108)	(.012)	(33.6°)					
	10°	58.7	12.11	.98	105.1°					
	<u>(5.6°)</u>	(17.2)	(.764)	(.299)	(40.6°)					
077	20°	48.4	4.99	.18	97.2°	1/20	1550	1200	1220	11
	<u>(11.1°)</u>	(14.2)	(.315)	(.055)	<u>(36.2°)</u>	(.037)		(.560)	(6.198)	
	30°	38.1	2.62	.05	89.3°					
	(16.7°)	(11.2)	(.165)	(.015)	<u>(31.8°)</u>					
	10°	46.5	9.59	.63	110.0°					
	<u>(5.6°)</u> 20°	(13.6) 38.5	<u>(.605)</u> 3.97	<u>(.192)</u> .12	<u>(43.3°)</u> 101.2°	1/20	1150	858	894	
077*	20° (11.1°)	38.5 (11.3)	3.97 (.250)	.12 (.037)	(38.4°)	(.037)	1150	(.400)	694 (4.542)	II
	<u> (11.1) </u>	30.5	2.09	.03	<u>92.7</u> °	(.007)		(.400)	(4.042)	
	(16.7°)	(8.9)	(.132)	(.009)	(33.7°)					
	10°	77.2	15.91	2.06	106.6°					
	(5.6°)	(22.6)	(1.004)	(.628)	(41.4°)					
104	20°	68.3	7.03	.44	101.2°	1/8	1070	1528	980	Ш
101	<u>(11.1°)</u>	(20.0)	(.443)	(.134)	(38.4°)	(.093)		(.713)	(4.978)	
	30°	59.3	4.08	.16	95.8°					
	(16.7°)	(17.4)	(.257)	(.049)	<u>(35.4°)</u>					
	10°	63.7	13.13	1.43	108.6°					
	<u>(5.6°)</u>	(18.7)	(.828)	(.436)	(42.6°)	1/0	050	1000	700	
104*	20°	56.5	5.82	.31	103.1°	1/8	850	1208	783	II
	<u>(11.1°)</u> 30°	(16.6) 49.2	<u>(.367)</u> 3.38	<u>(.095)</u> .11	(39.5°) 97.6°	(.093)		(.564)	(3.978)	
	(16.7°)	49.2 (14.4)	3.38 (.213)	(.034)	97.6° (36.4°)					
	<u>(18.7)</u> 10°	94.9	19.55	3.04	108.9°					
	(5.6°)	(27.8)	(1.233)	(.927)	(42.7°)					
105	<u>20°</u>	83.7	8.63	.65	103.1°	1/6	1100	1790	1170	111
125	(11.1°)	(24.5)	(.544)	(.198)	(39.5°)	(.124)		(.835)	(5.944)	111
	30°	72.5	4.98	.23	97.3°	· · · /		()	/	
	(16.7°)	(21.2)	(.314)	(.070)	(36.3°)					

**Performance based on 200°F EWT, 20°F TD, 60°F EAT. Performance at 10°F & 30°F TD is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 12. *Speed controller option is required for reduced ratings.

Table 7 - Standard Output Units

Unit Capacity (MBH)	Water Temp Drop °F (°C)	Output MBH (kW)	Flow Rate GPM (L/s)	Pressure Drop ft/water (m/water)	Final Air Temp °F (°C)	Motor HP† (kW)	Motor RPM	Nominal CFM (m³/s)	Outlet Velocity FPM (m/s)	Sound Rating
	10°	117.6	24.24	4.32	108.8°					
	<u>(5.6°)</u>	(34.5)	(1.529)	(1.318)	(42.7°)					
144	20°	105.2	10.84	.96	103.7°	1/6	1100	2220	1045	111
	<u>(11.1°)</u>	(30.8)	(.684)	(.293)	(39.8°)	(.124)		(1.036)	(5.309)	
	30°	92.8	6.38	.36	98.5°					
	(16.7°)	(27.2)	(.402)	(.110)	<u>(36.9°)</u>					
	10°	132.4	27.29	3.67	106.6°					
	<u>(5.6°)</u>	(38.8)	(1.722)	(1.119)	<u>(41.4°)</u>	4 /0	4400	0000	1000	
164	20°	118.6	12.22	.81	101.7°	1/6	1100	2620	1230	IV
	<u>(11.1°)</u>	(34.7)	<u>(.771)</u>	<u>(.247)</u>	<u>(38.7°)</u>	(.124)		(1.223)	(6.248)	
	30°	104.8	7.20	.30	96.9°					
	(16.7°)	(30.7)	(.454)	(.092)	<u>(36.1°)</u>					
	10°	156.2	32.20	5.02	105.0°					
	<u>(5.6°)</u>	(45.8)	(2.031)	(1.531)	<u>(40.6°)</u>	4 / 4	1100	0000	1 105	
200	20°	139.7	14.40	1.11	100.2°	1/4	1100	3200	1495	111
	<u>(11.1°)</u>	(40.9)	(.908)	(.339)	<u>(37.9°)</u>	(.186)		(1.493)	(7.595)	
	30°	123.2	8.47	.41	95.5°					
	<u>(16.7°)</u> 15°	(36.1)	<u>(.534)</u> 25.95	<u>(.125)</u> 3.92	<u>(35.3°)</u>					
		188.9			101.8°					
	<u>(8.3°)</u> 20°	<u>(55.3)</u> 180.1	(1.637)	<u>(1.196)</u> 2.10	<u>(38.8°)</u> 99.9°	1/4	1100	4162	1205	
237		(52.8)	18.56	2.10 (.641)			1100			IV
	<u>(11.1°)</u> 30°	162.7	<u>(1.171)</u>	.82	<u>(37.7°)</u> 96.0°	(.186)		(1.942)	(6.121)	
		(47.7)	11.18 (.705)	.02 (.250)						
	<u>(16.7°)</u> 15°	215.4	29.60	5.02	<u>(35.6°)</u> 104.8°					
	(8.3°)									
	<u>(0.3)</u> 20°	(63.1) 205.4	(1.867) 21.17	<u>(1.531)</u> 2.68	<u>(40.4°)</u> 102.7°	1/2	1100	4430	1275	
285	20 (11.1°)	(60.2)	(1.335)	(.817)	(39.3°)	(.373)	1100	(2.067)	(6.477)	IV
	<u> (11.1)</u> 30°	185.3	12.73	1.04	<u>(39.3)</u> 98.5°	(.373)		(2.007)	(0.477)	
	(16.7°)	(54.3)	(.803)	(.317)	(36.9°)					
	<u>15°</u>	254.9	35.03	6.88	105.1°					
	(8.3°)	(74.7)	(2.210)	(2.098)	(40.6°)					
o / 7	<u>20°</u>	242.9	25.03	3.67	103.0°	3/4	1140	5210	1500	
317	(11.1°)	(71.2)	(1.579)	(1.119)	(39.4°)	(.559)	1110	(2.431)	(7.620)	IV
	30°	218.9	15.04	1.42	98.7°	(.000)		(2.101)	(7:020)	
	(16.7°)	(64.1)	(.949)	(.433)	(37.1°)					
	<u>15°</u>	294.7	40.49	6.60	104.2°					
	(8.3°)	(86.3)	(2.554)	(2.013)	(40.1°)					
0.07	20°	280.8	28.94	3.52	102.2°	3/4	1140	6140	1770	11/
367	(11.1°)	(82.3)	(1.826)	(1.074)	(39.0°)	(.559)	-	(2.865)	(8.992)	IV
		253.1	17.39	1.36	98.0°	()		(/	()	
	(16.7°)	(74.2)	(1.097)	(.415)	(36.7°)					
	20°	368.1	37.93	5.81	102.3°					
495	(11.1°)	(107.9)	(2.393)	(1.772)	(39.1°)	1-1/2	1160	8020	1640	IV
495	30°	333.6	22.92	2.29	98.3°	(1.119)		(3.743)	(8.331)	IV
	(16.7°)	(97.7)	(1.446)	(.698)	(36.8°)	, , , , , , , , , , , , , , , , , , ,		()	, , , , , , , , , , , , , , , , , , ,	
	15°	451.2	62.00	8.78	104.0°					
	(8.3°)	(132.2)	(3.911)	(2.678)	(40.0°)					
585	20°	431.1	44.43	4.72	102.0°	1-1/2	1160	9450	1930	IV
505	(11.1°)	(126.3)	(2.803)	(1.440)	(38.9°)	(1.119)		(4.410)	(9.804)	IV
	30°	391.0	26.86	1.86	98.1°	. ,		· ·		
	(16.7°)	(114.6)	(1.694)	(.567)	(36.7°)					
	20°	519.4	53.52	5.29	103.5°					
700	(11.1°)	(152.2)	(3.376)	(1.613)	(39.7°)	3	1165	11,000	2250	IV
100	30°	470.9	32.35	2.08	99.5°	(2.237)		(5.133)	(11.430)	IV
	(16.7°)	(138.0)	(2.041)	(.634)	(37.5°)			. ,	. ,	

**Performance based on 200°F EWT, 20°F TD, 60°F EAT. Performance at 10°F & 30°F TD is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 12. *Speed controller option is required for reduced ratings.

Unit Capacity (MBH)	Water Temp Drop °F (°C)	Output MBH (kW)	Flow Rate GPM (L/s)	Pressure Drop ft/water m/water	Final Air Temp °F (°C)	Motor HP† (kW)	Motor RPM	Nominal CFM (m³/s)	Outlet Velocity FPM (m/s)	Sound Rating
. ,	10°	23.9	4.92	.26	92.9°			. ,		
	(5.6°)	(7.0)	(.310)	(.079)	(33.8°)					
040L	20°	18.9	1.95	.04	86.1°	1/40	1550	668	950	I
OTOL	<u>(11.1°)</u>	(5.5)	(.123)	(.012)	<u>(30.1°)</u>	(.019)		(.312)	(4.826)	
	30°	14.0	.96	.01	79.3°					
	<u>(16.7°)</u>	(4.1)	(.061)	(.003)	(26.3°)					
	10° (5.6°)	16.7	3.45 (.218)	.13	92.8° (33.8°)	1/40	1150	470	672	
040L*	<u>(5.6°)</u> 20°	(4.9) 13.5	<u> (.218)</u> 1.39	<u>(.040)</u> .02	<u>(33.8°)</u> 86.4 °	1/40	1150	(.219)	(3.414)	I
	(11.1°)	(4.0)	(.088)	.02	(30.2°)	(.019)		(.219)	(3.414)	
	10°	41.5	8.56	.80	91.9°					
	(5.6°)	(12.2)	(.540)	(.244)	(33.3°)					
062L	20°	34.2	3.53	.15	86.3°	1/20	1550	1200	1190	П
UUZL	(11.1°)	(10.0)	(.223)	(.046)	(30.2°)	(.037)		(.560)	(6.045)	
	30°	27.0	1.85	.04	80.7°					
	(16.7°)	(7.9)	(.117)	(.012)	<u>(27.1°)</u>					
	10°	32.4	6.68	.50	94.7°					
	<u>(5.6°)</u>	(9.5)	(.421)	(.153)	<u>(34.8°)</u>		1150	000	050	
062L*	20°	26.9	2.77	.09	88.7°	1/20	1150	862	858	II
	<u>(11.1°)</u> 30°	(7.9) 21.3	<u>(.175)</u> 1.46	<u>(.027)</u> .03	<u>(31.5°)</u> 82.8°	(.037)		(.402)	(4.359)	
	(16.7°)	(6.2)	(.092)	.03 (.009)	₀∠.₀ (28.2°)					
	<u>(10.7)</u> 10°	48.9	10.092)	.69	<u>(28.2)</u> 93.2°					
	(5.6°)	(14.3)	(.637)	(.210)	(34.0°)					
0771	<u>20°</u>	40.5	<u>4.17</u>	.13	87.4°	1/20	1550	1360	1350	
077L	(11.1°)	(11.9)	(.263)	(.040)	(30.8°)	(.037)		(.635)	(6.858)	II
	30°	32.0	2.20	.04	81.7°	()		()	(0.000)	
	(16.7°)	(9.4)	(.139)	(.012)	(27.6°)					
	`10° ´	38.5	7.94	.44	`95.7°́					
	(5.6°)	(11.3)	(.501)	(.134)	(35.4°)					
077L*	20°	32.0	3.29	.08	89.6°	1/20	1150	995	992	П
0,,,	<u>(11.1°)</u>	(9.4)	(.208)	(.024)	<u>(32.0°)</u>	(.037)		(.464)	(5.039)	
	30°	25.4	1.75	.02	83.5°					
	(16.7°)	(7.4)	(.110)	(.006)	(28.6°)					
	10°	63.7	13.13	1.43	93.5°					
	<u>(5.6°)</u> 20°	(18.7) 56.5	<u>(.828)</u> 5.82	<u>(.463)</u> .31	<u>(34.2°)</u> 89.7°	1/0	1070	1752	1050	
104L	20* (11.1°)	56.5 (16.6)	5.82 (.367)	.3 I (.095)	(32.1°)	1/8 (.093)	1070	(.818)	(5.334)	II
	<u> (11.1)</u> 30°	49.2	3.38	.11	85.9°	(.093)		(.010)	(0.004)	
	(16.7°)	(14.4)	(.213)	(.034)	(29.9°)					
	10°	54.5	11.24	1.06	93.5°					
	(5.6°)	(16.0)	(.709)	(.323)	(34.2°)					
104L*	20°	48.5	4.99	.23	89.8°	1/8	850	1499	827	Ш
IUTL	(11.1°)	(14.2)	(.315)	(.070)	(32.1°)	(.093)		(.700)	(4.201)	11
	30°	42.4	2.91	.08	86.1°	. ,				
	(16.7°)	(12.4)	(.184)	(.024)	(30.1°)					
	10°	83.7	17.24	2.40	95.4°					
	<u>(5.6°)</u>	(24.5)	(1.088)	(.732)	<u>(35.2°)</u>			04.00	1000	
125	20°	73.9	7.62	.51	91.3°	1/6	1100	2180	1390	111
	<u>(11.1°)</u>	<u>(21.7)</u>	<u>(.481)</u>	<u>(.156)</u>	(32.9°)	(.124)		(1.017)	(7.061)	
	30° (16.7°)	64.2 (18.8)	4.41 (.278)	.18 (.055)	87.1° (30.6°)					

Table 8 - Low Output Units Standard Vertical Unit with All Air Ports Open

**Performance based on 200°F EWT, 20°F TD, 60°F EAT. Performance at 10°F & 30°F TD is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 12. *Speed controller option is required for reduced ratings.

Unit Capacity (MBH)	Water Temp Drop °F (°C)	Output MBH (kW)	Flow Rate GPM (L/s)	Pressure Drop ft/water (m/water)	Final Air Temp °F (°C)	Motor HP† (kW)	Motor RPM	Nominal CFM (m³/s)	Outlet Velocity FPM (m/s)	Sound Rating
	10°	95.4	19.66	2.92	97.3°					
	<u>(5.6°)</u>	(28.0)	(1.240)	(.891)	(36.3)				1000	
144L	20°	85.5	8.81	.65	93.4°	1/6	1100	2360	1080	
	<u>(11.1°)</u> 30°	(25.1) 75.6	<u>(.556)</u> 5.20	<u>(.198)</u> .24	(34.1) 89.5°	(.124)		(1.101)	(5.486)	
	(16.7°)	(22.2)	(.328)	(.073)	(31.9)					
	<u>10°</u>	112.3	23.15	2.70	95.4°					
	(5.6°)	(32.9)	(1.460)	(.824)	(35.2)					
164L	20°	100.7	10.38	.60	91.8°	1/6	1100	2920	1340	IV
104L	<u>(11.1°)</u>	(29.5)	(.655)	(.183)	(33.2)	(.124)		(1.363)	(6.807)	IV
	30°	89.2	6.13	.22	88.1°					
	(16.7°)	(26.1)	(.387)	(.067)	(31.2)					
	10°	135.8	27.98 (1.765)	3.85	96.9°					
	<u>(5.6°)</u> 20°	<u>(39.8)</u> 121.8	<u> </u>	<u>(1.174)</u> . 85	<u>(36.1)</u> 93.0 °	1/4	1100	3390	1560	
200L _	(11.1°)	(35.7)	(.790)	(.259)	(33.9)	(.186)	1100	(1.582)	(7.925)	111
	<u> </u>	107.3	7.37	.32	89.2°	(.100)		(1.502)	(7.525)	
	(16.7°)	(31.4)	(.465)	(.098)	(31.8)					
	10°	168.5	34.72	6.75	94.5°					
	(5.6°)	(49.4)	(2.190)	(2.059)	(34.7)					
237L	20°	153.8	15.85	1.56	91.4°	1/4	1100	4507	1270	IV
2072	<u>(11.1°)</u>	(45.1)	(1.000)	(.476)	(33.0)	(.186)		(2.103)	(6.452)	
	30°	139.1	9.56	.61	88.4°					
	<u>(16.7°)</u> 10°	(40.8)	(.603)	(.186)	<u>(31.3)</u> 94.5°					
-	(5.6°)	188.9 (55.3)	25.95 (1.637)	3.92 (1.196)	(34.7)					
	<u>(3.0_)</u> 20 °	<u>180.1</u>	18.56	<u>2.10</u>	<u>92.9</u> °	1/2	1100	5040	1420	
285L	(11.1°)	(52.8)	(1.171)	(.641)	(33.8)	(.373)	1100	(2.352)	(7.214)	IV
	30°	162.7	11.18	.82	89.7°	()		(=:==)	()	
	(16.7°)	(47.7)	(.705)	(.250)	(32.1)					
	10°	220.9	30.35	5.26	95.7°					
	<u>(5.6°)</u>	(64.7)	(1.915)	(1.604)	(35.4)					
317L	20°	210.6	21.70	2.81	94.1°	3/4	1140	5700	1610	IV
	<u>(11.1°)</u>	<u>(61.7)</u>	(1.369)	(.857)	<u>(34.5)</u>	(.559)		(2.660)	(8.179)	
	30° (16.7°)	189.9 (55.6)	13.05 (.823)	1.09 (.332)	90.7° (32.6)					
	<u>(10.7)</u> 10°	260.7	35.82	5.24	96.4°					
	(5.6°)	(76.4)	(2.260)	(1.598)	(35.8)					
2671	20°	248.5	25.61	2.80	94.7°	3/4	1140	6600	1870	IV
367L	(11.1°)	(72.8)	(1.616)	(.854)	(34.8)	(.559)		(3.080)	(9.500)	IV
	30° ́	224.2	15.40	1.09	91.3°					
	<u>(16.7°)</u>	(65.7)	(.971)	(.332)	(32.9)					
	20°	310.5	32.00	4.23	90.5°	1 1 10	1100	0000	1000	
495L	<u>(11.1°)</u>	<u>(91.0)</u>	<u>(2.019)</u>	(1.290)	<u>(32.5)</u>	1-1/2	1160	9380	1860	IV
	30° (16.7°)	281.7 (82.5)	19.35 (1.221)	1.67 (.509)	87.7° (30.9)	(1.119)		(4.377)	(9.449)	
	<u>(16.7°)</u> 10°	<u>(82.5)</u> 394.4	54.19	6.83	<u>(30.9)</u> 95.3°					
	(5.6°)	(115.6)	(3.418)	(2.083)	(35.2)					
5951	<u>20°</u>	377.0	38.85	3.68	93.7°	1-1/2	1160	10,300	2060	IV
585L	(11.1°)	(110.5)	(2.451)	(1.122)	(34.3)	(1.119)		(4.807)	(10.465)	IV
	30°	342.2	23.51	1.45	90.6°	. ,		. ,	. ,	
	(16.7°)	(100.3)	(1.483)	(.442)	(32.6)					
	20°	453.7	46.76	4.11	95.1°	_				
700L	<u>(11.1°)</u>	(132.9)	(2.950)	(1.254)	(35.1)	3	1165	11,900	2380	IV
700L	30°	411.7	28.28	1.62	91.9°	(2.237)		(5.553)	(12.090)	

Table 8 - Low Output Units Standard Vertical Unit with All Air Ports Open

**Performance based on 200°F EWT, 20°F TD, 60°F EAT. Performance at 10°F & 30°F TD is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 12. *Speed controller option is required for reduced ratings.

HOT WATER CALCULATIONS AND CORRECTION FACTOR

		EXAMPLE: – 40 UNIT SIZE40 160°F Entering Water Temp160°F 40°F Water Temperature Drop10°F 10°F
I. CAPACITY @ 20°FTD: A. For 200°F EWT, 60°F EAT	Read output directly from Tables 7 & 8, 22,700 BTU/HR (Ref., Std. 40, p. 8).	
B. For EWT and/or EAT above or below Standard	Multiply output from Tables 7 & 8 by factor from Table 9 (below).	22,700×.878=19,931 BTU/HR.
II. CAPACITY AT OTHER TD's A. For TD's from 5 to 60°F	Multiply output obtained in IA or IB (above) by appropriate factor from Table 10 (below)	IA - 22,700 x 1.15 = 26,105 BTU/HR. – OR – IB - 19,931 x 1.15 = 22,921 BTU/HR.
III. GPM AT OTHER TD's A. For TD's from 5 to 60°F	Multiply GPM of unit for 20°FTD, from Tables 7 & 8 by appropriate factor from Table 10 (below).	$2.34 \times 2.30 = 5.38 \text{ GPM} (\text{Applies only to units with} \\ \text{Std.} 200^\circ \text{F EWT}, 60^\circ \text{F EAT}) \text{ For all others calculate} \\ \text{using formula} - \text{GPM} = \frac{\text{BTU}}{500 \times \text{TD}}$
IV. PRESSURE LOSS AT OTHER TD's A.For TD's from 5 to 60°F	Multiply P.D. of unit for 20°FTD, from Tables 7 & 8 by appropriate factor from Table 10 (below).	$.06 \times 5.00 = .30 \text{ Ft. H}_2\text{O}$

TABLE 9 - HOT WATER CONVERSION FACTORS BASED ON 200°F ENTERING WATER60°F ENTERING AIR 20°F TEMPERATURE DROP

		ENTERING WATER TEMPERATURE — 20°F WATER TEMPERATURE DROP										
ENTERING AIR	100°	120°	140°	160°	180°	200°	220°	240°	260°	280°	300°	
TEMPERATURE °F (°C)	(38°)	(49°)	(60°)	(71°)	(82°)	(93°)	(104°)	(116°)	(127°)	(138°)	(149°)	
30° (-1)	0.518	0.666	0.814	0.963	1.120	1.268	1.408	1.555	1.702	1.850	1.997	
40° (4)	0.439	0.585	0.731	0.878	1.025	1.172	1.317	1.464	1.609	1.755	1.908	
50° (10)	0.361	0.506	0.651	0.796	0.941	1.085	1.231	1.375	1.518	1.663	1.824	
60° (16)	0.286	0.429	0.571	0.715	0.857	1.000	1.143	1.286	1.429	1.571	1.717	
70° (21)	0.212	0.353	0.494	0.636	0.777	0.918	1.060	1.201	1.342	1.483	1.630	
80° (27)	0.140	0.279	0.419	0.558	0.698	0.837	0.977	1.117	1.257	1.397	1.545	
90° (32)	0.069	0.207	0.345	0.483	0.621	0.759	0.897	1.035	1.173	1.311	1.462	
100° (38)	0	0.137	0.273	0.409	0.546	0.682	0.818	0.955	1.094	1.230	1.371	

To obtain the BTU capacity for conditions other than those in the basic capacity tables, multiply the basic rating (200°F entering water, 60°F entering air,) by the proper constant from the above tables.

TABLE 10 - HOT WATER BTU, GPM AND PRESSURE LOSS FACTORS BASED ON STANDARD
CONDITIONS OF 200°F ENTERING WATER 60°F ENTERING AIR & 20°F WATER DROP

USE FACTORS FROM THIS TABLE TO OBTAIN	TEMPERATURE DROP °F (°C)									
APPROXIMATE RESULTS	5 (3)	10 (6)	15 (8)	20 (11)	25 (14)	30 (17)	40 (22)	50 (28)	60 (33)	
To obtain BTU for other Water Temperature Drops, multiply basic BTU rating by applicable Factor.	1.25	1.15	1.08	1.00	.94	.90	.83	.76	.72	
To obtain GPM for other Water Temperature Drops, multiply basic GPM rating by applicable Factor.*	5.00	2.30	1.44	1.00	.74	.59	.40	.30	.24	
To obtain Pressure Loss Feet of Water for other temperature Drops, multiply Basic loss at 20°F drop by Factor.	10.00	5.00	2.00	1.00	.60	.40	.20	.13	.07	

*TABLE 11 — MINIMUM WATER FLOW — GPM

UNIT SIZE	40	62	77	104	144	164	200	237	317	367
MIN.	.55	.55	.55	.55	.82	.82	1.10	1.10	1.10	1.10
GPM (L/s)	(.035)	(.035)	(.035)	(.035)	(.052)	(.052)	(.069)	(.069)	(.069)	(.069)

*TABLE 12 — HEATING CAPACITY FACTORS FOR VARIOUS RATES OF WATER FLOW

% of Rated Water Flow	25%	50%	75%	100%	125%	150%	175%
Btu/Hr Heating Capacity	.80	.89	.96	1.00	1.04	1.07	1.10

TECHNICAL DATA

The performance data listed in Tables 3, 4, 7 and 8 include sound ratings. The ratings provide a guide in determining the acceptable degree of loudness in particular occupancy situations.

Certain general rules apply to specific selection of unit heaters with regard to degree of quietness (or loudness);

- The greater the fan diameter, the higher the sound level.
- The higher the motor RPM, the higher the sound level. Note that on most units the lower the speed mode results in lowering the sound rating one increment.
- Selecting a larger number of smaller units generally results in lower overall noise levels than fewer large units.

All vertical steam and hot water unit heater motors, whether fan guard or shelf-mounted, are isolated from the mechanical mount by resilient isolators. This mounting along with balanced fan blades and excellent overall construction integrity, assures you the utmost in quiet operation.

The following table outlines sound ratings for various applications. The lower the number, the quieter the unit and the lower the sound requirement.

CATEGORY OF AREA	SOUND RATING
Apartment, assembly hall, classrooms churches, courtrooms, executive offices, hospitals, libraries, museums, theatres.	I
Dining rooms, general offices, recreation areas, small retail stores.	II
Restaurants, banks, cafeterias, depart- ment stores, public buildings, service stations.	III IV
Gymnasiums, health clubs, laundromats, supermarkets.	V
Garages, small machine shops, light manufacturing.	v - V *
Factories, foundries, steel mills.	III - VII
*Depending on specific use in these	

facilities, size of operation, etc.

CORRECTIONS WHEN USING GLYCOL SOLUTION IN SYSTEM

	Propylene Glycol		Propylene Glycol			
1. Heat transfer @180°F 20% solution	.97*	7. Freezing Point 55% by volume	-			
with no increase in flow rate 50% solution	.90*	50% 40% 30%	-28°F -13°F + 4°F			
 G.P.M. Req'd. @180°F, 20° ∆ t (no correction to pump curve) 	1.10%*	20%	+ 4 F +17°F			
3. Pump Head Reg'd. @180°F w/increase		*Compared to water.				
in G.P.M.	1.23%*	Approximate factors at varying altitudes				
4. Specify gravity (water = 1.0)	1.045-1.055*	Altitude	Factor			
		Sea level - 1000 ft.	1.00			
Pounds/Gallons @60°F	8.77	1000 ft 3000 ft.	.958			
(water = 8.3453 Pound/Gallon)		3000 ft 5000 ft.	.929			
		5000 ft 7000 ft.	.900			
6. pH @ 50% by volume	9.5	7000 ft 10000 ft.	.871			

MOTOR DATA

NOTE 1: All motors are constant speed and operate at top speed as indicated in motor data. Models through 1/8 H.P. can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models 164 through 700 operate at constant speed as indicated in motor data.

Table 13 - Standard (Totally Enclosed) Motor Type [MT=1]

Unit

700

3.8†

4.7

8.4

3

1165

Unit Size	AMP	MCA	МОР	HP	RPM
	0 [SV=1]				
40	1.23**	1.6	2.8	1/40*	1550
62			4.7	1 (0.0.t	
77	2.1**	2.6	4.7	1/20*	1550
104	1.2**	1.5	2.7	1/8*	1070
125					
144	2.3**	2.9	5.2	1/6	1100
164					
200	3.6**	4.5	8.1	1/4	1100
237	3.6**	4.5	8.1	1/4	1100
285	5.4**	6.8	12.2	1/2	1100
208-23	0/460/3/60 [SV=	4, 5 or 6]			
40	0.98-1.1/0.55†	1.2-1.4/0.7	2.2-2.5/1.2	1/6	1140
62 77	0.98-1.1/0.55†	1.2-1.4/0.7	2.2-2.5/1.2	1/6	1140
104	0.98-1.1/0.55†	1.2-1.4/0.7	2.2-2.5/1.2	1/6	1140
125					
144	0.98-1.1/0.55†	1.2-1.4/0.7	2.2-2.5/1.2	1/6	1140
164					
200	1.2-1.4/0.7†	1.5-1.8/0.9	2.7-3.2/1.6	1/4	1140
237	1.2-1.4/0.7†	1.5-1.8/0.9	2.7-3.2/1.6	1/4	1140
285	1.8-2.0/1.0†	2.3-2.5/1.3	4.1-4.5/2.3	1/2	1140
317	3.1-3.2/1.6†	3.9-4.0/2.0	7.0-7.2/3.6	3/4	1140
367	0.1 0.2/1.01	0.0 4.0/2.0	7.0 7.2/0.0	0/4	1140
495	5.0-4.4/2.2†	6.3-5.5/2.8	11.9-11.3/5.6	1-1/2	1160
585					
700	9.6-8.2/4.1†	12.0-10.3/5.1	22.3-22.1/11.0	3	1165
-	0 [SV=7]				
40					
62					
77					
104					
125	0.6†	0.8	1.4	1/3	1140
144					
164					
200					
237	0.0*	1.0	1.0	1/0	1110
285	0.8†	1.0	1.8	1/2	1140
317	1.3†	1.6	2.9	3/4	1140
367					
495	2.0†	2.5	4.5	1-1/2	1160
585					

NOTE 2: Stated draw is Full Load (FLA). AMP draw varies by motor manufacturer ± .2 AMPS. Verify FLA on motor data plate.

CAUTION: Select appropriate AMP MCA, and MOP for the multiple voltage motors. For example, the AMP, MCA, and MOP for Model 40 with a 230 volt Totally Enclosed motor is 1.1, 1.4, and 2.5 respectively.

NOTICE: For units with explosion proof motors, junction box is field provided.

Table 14 - Explosion Proof with Thermal Overload Motor Type [MT=2]

Unit Size	AMP	МСА	MOP	HP	RPM					
115/1/6	0 [SV=1]									
40	3.8**	4.8	8.6	1/6	1140					
62	3.8**	4.8	8.6	1/6	1140					
77	3.0	4.0	0.0	1/0	1140					
104	3.8**	4.8	8.6	1/6	1140					
125										
144	3.8**	4.8	8.6	1/6	1140					
164	-									
200	4.4**	5.5	9.9	1/4	1140					
237	4.4**	5.5	9.9	1/4	1140					
285	7.8**	9.8	17.6	1/2	1140					
208-230	208-230/460/3/60 [SV=4, 5 or 6]									
40	1.0-1.0/0.5**	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140					
62	1.0-1.0/0.5**	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140					
77	1.0-1.0/0.5	1.3-1.3/0.0	2.3-2.3/1.1	1/0	1140					
104	1.0-1.0/0.5**	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140					
125										
144	1.0-1.0/0.5**	1.3-1.3/0.6	2.3-2.3/1.1	1/6	1140					
164										
200	1.1-1.1/0.55**	1.4-1.4/0.7	2.5-2.5/1.2	1/4	1140					
237	1.1-1.1/0.55**	1.4-1.4/0.7	2.5-2.5/1.2	1/4	1140					
285	1.9/0.95**‡	2.4/1.2	4.3/2.1	1/2	1140					
317	3.1-3.2/1.6**	3.9-4.0/2.0	7.0-7.2/3.6	3/4	1145					
367	3.1-3.2/1.0	3.9-4.0/2.0	1.0-1.2/3.0	3/4	1143					
495	5.0/2.5**‡	6.5/3.3	11.7/5.9	1-1/2	1150					
585	5.0/2.5 *	0.0/3.3	11.7/3.9	1-1/2	1150					
700	10.0/5.0†‡	12.5/6.3	22.5/11.3	3	1150					

*Optional variable speed switch is available.

- ** These motors have automatic thermal overload protection or impedance protection.
- [†] These motors are without thermal overload protection. Motors without thermal overload protection must be installed with the optional manual starter or other field provided overload protection.

[‡]These motors are 230/460 volts only.

NOTE: Models 317 through 700 are not available for either Totally Enclosed or Explosion Proof with Overload 115/1/60 motor types.

INSTALLATION

It is assumed that the design engineer has selected, sized, and located in the area to be heated by the design engineer. However, the information given here may be of additional help to the installer.

Vertical unit heaters should be located to give spot heating or a circulatory distribution, preferably near the outer perimeter of the building. The units should be spaced to properly blanket the areas with warm air. Place the units at points of greatest heat loss. Blanket outside doorway and provide ample coverage of window areas. Keep units away from obstructions that will impede the full and natural air delivery of the units.

Install unit heaters to meet ETL and OSHA requirements; Vertical Unit Heaters mounted lower than 2.4 meters (8 feet) from the floor must be equipped with an OSHA fan guard. Weldnuts are provided at the top of all units for suspension purposes. The unit should be suspended from connections provided in the unit by means of rods. The rods should then be attached to solid supports of the building.

Units must hang level vertically and horizontally.

Provide sufficient clearance around units for maintenance purposes. This includes at least 7 inches above all Vertical Unit Heaters even though the motor is removable through the bottom. To provide efficient airflow to the unit, maintain a clearance of 2 feet (0.61m) around all sides of the unit.

Maximum altitude for this unit is 14,000 feet (4,267 meters) unless otherwise noted. For altitudes higher than 14,000 feet (4,267 meters), contact your customer service representative.

Isolators are not required but may be desirable for some applications. Refer to Table 15 for Unit Weights.

Table 15 – Unit Weights-Lbs

VERTICAL UNIT HEATERS

VENTIONE ON	
	Approx. Ship
Unit	Weight (Lbs.)
40	32
62	40
77	43
104	63
125	64
144	80
164	80
200	86
237	134
285	139
317	139
367	146
495	294
585	307
700	366

A WARNING Make certain that the lifting methods used to lift the heater and the method of suspension used in the field installation of the heater are capable of uniformly supporting the weight of the heater at all times. Failure to heed this warning may result in property damage or personal injury!

A WARNING Make certain that the structure to which the heater is mounted is capable of supporting its weight. Under no circumstances must the piping or the electrical conduit be used to support the heater; or should any other objects (i.e. ladder, person) lean against the heater or the electrical conduit for support.

A CAUTION Unit heaters must be hung level from side to side and from front to back. Failure to do so will result in poor performance and or premature failure of the unit.

A WARNING Ensure that all hardware used in the suspension of each unit heater is more than adequate for the job. Failure to do so may result in extensive property damage, severe personal injury or death. Washers should not be used between the unit nutsert and jam nut. Use of a washer may cause the nutsert to become dislodged from the unit.

EXAMPLE

Table 18 lists maximum mounting height and floor spread data of warm air coverage at floor level with louver cone diffusers. Correction factors for various water temp. and PSI of steam are in Table 19.

An approximation of the floor spread when operating on other than 2 lb. Steam or 219 degree may be obtained by ratioing the new floor spread and the maximum mounting height to that at 2 lb. steam or 219 degree hot water.

Following is an example:

Determine the floor spread and the maximum mounting height of a std. model 77 unit heater with a cone diffuser set at 90 degrees, operating on 280 degree hot water.

From Table 18, maximum mounting height of a model 77 at 219 degree hot water is 18.5 ft. with floor coverage of 14.0 ft. diameter. The maximum mounting height correction factor at 280 degree hot water is 0.80.

18.5 ft. x 0.80 = 14.8 ft.

Maximum mounting height of a model 77 using 280 degree hot water.

"X" = floor spread of model 77 using 280 degree hot water.

```
X = 14.8 x 14.0 / 18.5
X = 207.2 / 18.5
X = 11.2 ft.
```

		Steam	Pressur	e (PSI)				Steam	Pressur	e (PSI)	
Unit	2	5	10	50	75	Unit	2	5	10	50	75
Size	(13.8)	(34.5)	(68.9)	(344.7)	(517.1)	Size	(13.8)	(34.5)	(68.9)	(344.7)	(517.1)
	10.5	10.0	10.0	9.0	8.0		18.0	17.5	17.5	15.0	14.0
40	(3.2)	(3.0)	(3.0)	(2.7)	(2.4)	771	(5.5)	(5.3)	(5.3)	(4.6)	(4.3)
40	12.5	12.0	12.0	11.0	10.0	77L	22.0	21.0	21.0	19.0	18.0
	(3.8)	(3.7)	(3.7)	(3.4)	(3.0)		(6.7)	(6.4)	(6.4)	(5.8)	(5.5)
	7.5	7.5	7.5	7.5	7.5		13.0	12.5	12.0	11.0	10.5
40*	(2.3)	(2.3)	(2.3)	(2.3)	(2.3)	77L*	(4.0)	(3.8)	(3.7)	(3.4)	(3.2)
40	9.0	8.5	8.5	7.5	7.5	//L	17.0	16.5	16.0	14.0	13.5
	(2.7)	(2.6)	(2.6)	(2.3)	(2.3)		(5.2)	(5.0)	(4.9)	(4.3)	(4.1)
	12.5	12.0	12.0	10.5	9.5		14.0	13.5	13.0	11.5	11.0
40L	(3.8)	(3.7)	(3.7)	(3.2)	(2.9)	104	(4.3)	(4.1)	(4.0)	(3.5)	(3.4)
40L	14.5	14.0	13.5	12.0	11.5	104	17.0	16.5	16.0	14.0	13.5
	(4.4)	(4.3)	(4.1)	(3.7)	(3.5)		(5.2)	(5.0)	(4.9)	(4.3)	(4.1)
	9.0	8.5	8.5	7.5	7.5		11.0	10.5	10.5	9.5	9.0
40L*	(2.7)	(2.6)	(2.6)	(2.3)	(2.3)	104*	(3.4)	(3.2)	(3.2)	(2.9)	(2.7)
40L	10.5	10.0	10.0	9.0	8.5	104	13.5	13.0	13.0	12.0	11.5
	(3.2)	(3.0)	(3.0)	(2.7)	(2.6)		(4.1)	(4.0)	(4.0)	(3.7)	(3.5)
	12.0	11.5	11.5	10.0	9.5	104L	17.5	17.0	16.5	15.0	14.5
62	(3.7)	(3.5)	(3.5)	(3.0)	(2.9)		(5.3)	(5.2)	(5.0)	(4.6)	(4.4)
02	14.5	14.0	14.0	12.0	11.5	104L	21.5	21.0	20.5	18.5	17.5
	(4.4)	(4.3)	(4.3)	(3.7)	(3.5)		(6.6)	(6.4)	(6.2)	(5.6)	(5.3)
	9.5	9.0	9.0	8.0	8.0		15.0	14.5	14.5	13.0	12.5
62*	(2.9)	(2.7)	(2.7)	(2.4)	(2.4)	104L*	(4.6)	(4.4)	(4.4)	(4.0)	(3.8)
02	11.5	11.0	11.0	9.5	9.0	104L	18.5	18.0	18.0	16.0	15.0
	(3.5)	(3.4)	(3.4)	(2.9)	(2.7)		(5.6)	(5.5)	(5.5)	(4.9)	(4.6)
	15.0	14.5	14.5	12.5	12.0		16.0	15.5	15.5	14.0	13.5
62L	(4.6)	(4.4)	(4.4)	(3.8)	(3.7)	125	(4.9)	(4.7)	(4.7)	(4.3)	(4.1)
02L	19.0	18.5	18.5	16.5	16.0	125	19.5	19.0	18.5	17.0	16.0
	(5.8)	(5.6)	(5.6)	(5.0)	(4.9)		(5.9)	(5.8)	(5.6)	(5.2)	(4.9)
	11.5	11.0	11.0	9.5	9.0		21.0	20.5	20.0	17.5	17.0
62L*	(3.5)	(3.4)	(3.4)	(2.9)	(2.7)	125L	(6.4)	(6.2)	(6.1)	(5.3)	(5.2)
UZL	14.0	13.5	13.5	12.0	11.5	1200	26.0	25.5	25.0	22.5	21.5
	(4.3)	(4.1)	(4.1)	(3.7)	(3.5)		(7.9)	(7.8)	(7.6)	(6.9)	(6.6)
	15.0	14.5	14.0	12.0	11.5		15.5	15.0	14.5	13.0	12.0
77	(4.6)	(4.4)	(4.3)	(3.7)	(3.5)	144	(4.7)	(4.6)	(4.4)	(4.0)	(3.7)
	18.5	18.0	17.5	15.5	15.0	144	19.0	18.5	18.0	16.0	15.5
	(5.6)	(5.5)	(5.3)	(4.7)	(4.6)		(5.8)	(5.6)	(5.5)	(4.9)	(4.7)
	11.0	10.5	10.5	9.0	8.5		18.0	17.5	17.5	15.0	14.0
77*	(3.4)	(3.2)	(3.2)	(2.7)	(2.6)	144L	(5.5)	(5.3)	(5.3)	(4.6)	(4.3)
11	13.5	13.0	13.0	11.5	11.0	144L	22.5	22.0	21.5	18.5	18.0
	(4.1)	(4.0)	(4.0)	(3.5)	(3.4)		(6.9)	(6.7)	(6.6)	(5.6)	(5.5)

Table 16 - Maximum Mounting Height in Feet with and without Louver Cone Diffuser

NOTES:

* = Low Speed

L = Low output model with all air ports open

Figures in bold face show maximum mounting height with louver cone diffusers set vertically.

Above table based on 60°F entering air temperature. In providing for the use of diffusers, it must be remembered that adjustment of a LCD to deflect air toward horizontal immediately lowers the mounting height limit.

		Steam	Pressur	e (PSI)			Steam Pressure (PSI)					
Unit	2	5	10 50		75	Unit	2	5	10	50	75	
Size	(13.8)	(34.5)	(68.9)	(344.7)	(517.1)	Size	(13.8)	(34.5)	(68.9)	(344.7)	(517.1)	
	18.0	17.5	17.0	14.5	14.0	017	29.0	28.5	28.0	25.0	24.0	
164	(5.5)	(5.3)	(5.2)	(4.4)	(4.3)		(8.8)	(8.7)	(8.5)	(7.6)	(7.3)	
104	22.5	22.0	21.5	19.0	18.0	317L	36.0	35.0	34.0	30.0	29.0	
	(6.9)	(6.7)	(6.6)	(5.8)	(5.5)		(11.0)	(10.7)	(10.4)	(9.1)	(8.8)	
	22.0	21.5	21.0	18.5	17.5		28.5	28.0	27.5	24.0	23.0	
164L	(6.7)	(6.6)	(6.4)	(5.6)	(5.3)	367	(8.7)	(8.5)	(8.4)	(7.3)	(7.0)	
104L	27.5	27.0	26.5	23.5	22.5	307	35.5	35.0	34.0	30.0	29.0	
	(8.4)	(8.2)	(8.1)	(7.2)	(6.9)		(10.8)	(10.7)	(10.4)	(9.1)	(8.8)	
	22.0	21.5	21.0	18.5	17.5		32.5	31.5	30.5	27.5	26.5	
200	(6.7)	(6.6)	(6.4)	(5.6)	(5.3)	2671	(9.9)	(9.6)	(9.3)	(8.4)	(8.1)	
200	27.5	27.0	26.5	24.0	23.0	367L	41.0	40.0	39.0	35.0	33.5	
	(8.4)	(8.2)	(8.1)	(7.3)	(7.0)		(12.5)	(12.2)	(11.9)	(10.7)	(10.2)	
	25.5	25.0	24.5	22.0	21.0	495	29.5	29.0	28.5	25.0	24.0	
200L	(7.8)	(7.6)	(7.5)	(6.7)	(6.4)		(9.0)	(8.8)	(8.7)	(7.6)	(7.3)	
200L	31.5	31.0	30.5	27.0	26.0		36.5	36.0	35.5	32.0	30.5	
	(9.6)	(9.4)	(9.3)	(8.2)	(7.9)		(11.1)	(11.0)	(10.8)	(9.8)	(9.3)	
	20.0	19.5	19.0	17.0	16.0	495L	35.0	34.0	33.0	29.0	28.0	
237	(6.1)	(5.9)	(5.8)	(5.2)	(4.9)		(10.7)	(10.4)	(10.1)	(8.8)	(8.5)	
237	25.0	24.0	23.5	20.5	19.5		43.5	42.5	41.5	35.0	34.0	
	(7.6)	(7.3)	(7.2)	(6.2)	(5.9)		(13.3)	(13.0)	(12.6)	(10.7)	(10.4)	
	24.0	23.5	23.0	20.0	19.0	505	34.0	33.0	32.0	28.0	27.0	
237L	(7.3)	(7.2)	(7.0)	(6.1)	(5.80		(10.4)	(10.1)	(9.8)	(8.5)	(8.2)	
237L	29.5	28.5	28.0	24.5	23.5	585	42.5	41.5	40.5	36.0	34.5	
	(9.0)	(8.7)	(8.5)	(7.5)	(7.2)		(13.0)	(12.6)	(12.3)	(11.0)	(10.5)	
	21.0	20.5	20.0	17.5	17.0		37.0	36.0	35.0	31.0	30.0	
285	(6.4)	(6.2)	(6.1)	(5.3)	(5.2)	585L	(11.3)	(11.0)	(10.7)	(9.4)	(9.1)	
205	26.0	25.5	25.0	22.0	21.0	303L	46.5	45.5	44.5	39.0	37.0	
	(7.9)	(7.8)	(7.6)	(6.7)	(6.4)		(14.2)	(13.9)	(13.6)	(11.9)	(11.3)	
	25.5	25.0	24.5	21.0	20.0		38.5	37.5	36.5	32.0	30.5	
285L	(7.8)	(7.6)	(7.5)	(6.4)	(6.1)	700	(11.7)	(11.4)	(11.1)	(9.8)	(9.3)	
200L	32.0	31.0	30.0	26.0	25.0	700	48.0	47.0	46.0	40.0	39.0	
	(9.8)	(9.4)	(9.1)	(7.9)	(7.6)		(14.6)	(14.3)	(14.0)	(12.2)	(11.9)	
	24.0	23.0	22.0	20.0	19.0		42.5	41.5	40.5	35.0	33.5	
317	(7.3)	(7.0)	(6.7)	(6.1)	(5.8)	700L	(13.0)	(12.6)	(12.3)	(10.7)	(10.2)	
517	30.0	29.0	28.0	25.0	24.0	700L	53.0	52.0	51.0	44.0	42.0	
	(9.1)	(8.8)	(8.5)	(7.6)	(7.3)		(16.2)	(15.8)	(15.5)	(13.4)	(12.8)	

Table 16 - Maximum Mounting Height in Feet with and without Louver Cone Diffuser

NOTES:

* = Low Speed

L = Low output model with all air ports open

Figures in bold face show maximum mounting height with louver cone diffusers set vertically.

Above table based on 60°F entering air temperature. In providing for the use of diffusers, it must be remembered that adjustment of a LCD to deflect air toward horizontal immediately lowers the mounting height limit.

Table 17 - Maximum Spread

Unit Size	40	62	77	104	125	144	164	200	237	285	317	367	495	585	700
Spread	15	17	20	24	26	27	28	32	35	37	45	50	54	57	60
ft (m)	(4.6)	(5.2)	(6.1)	(7.3)	(7.9)	(8.2)	(8.5)	(9.8)	(10.7)	(11.3)	(13.7)	(15.2)	(16.5)	(17.4)	(18.3)

Note: The "spread" is the diameter of the comfort zone at floor level. The above table represents the spread for standard units without a louver cone diffuser and mounted at its maximum height at 2 PSI (13.8 kPa) steam pressure and 60°F (16*C) entering air. (See Table 16 for maximum mounting heights.)

Figure 5

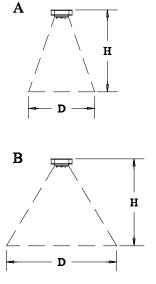
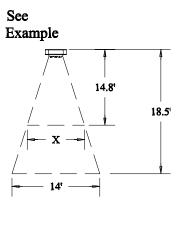



Table 18 - Maximum Mounting Height and Diameter at Floor (Based on 60°F EAT and 219°F EWT or 2 PSI steam)

	D	iffuser	Cone 9	D°	Diffuser Cone 45°					
		See Fig	jure 5A		See Figure 5B					
	Stan	dard	Low C	Output	Stan	dard	Low C	Output		
Unit	H D		H D		н	D	н	D		
Size	ft (m)	ft (m)	ft (m)	ft (m)	ft (m)	ft (m)	ft (m)	ft (m)		
40	12.5	11.0	14.5	16.0	9.0	20.0	11.0	25.0		
	(3.8)	(3.4)	(4.4)	(4.9)	(2.7)	(6.1)	(3.4)	(7.6)		
62	14.5	12.0	19.0	19.0	10.0	24.0	12.0	29.0		
	(4.4)	(3.7)	(5.8)	(5.8)	(3.0)	(7.3)	(3.7)	(8.8)		
77	18.5	14.0	22.0	23.0	12.5	26.0	15.0	31.0		
	(5.6)	(4.3)	(6.7)	(7.0)	(3.8)	(7.9)	(4.6)	(9.4)		
104	17.0	18.0	21.5	26.0	11.0	31.0	14.0	35.0		
	(5.2)	(5.5)	(6.6)	(7.9)	(3.4)	(9.4)	(4.3)	(10.7)		
125	19.5	19.0	26.0	29.0	13.0	33.0	16.0	38.0		
	(5.9)	(5.8)	(7.9)	(8.8)	(4.0)	(10.1)	(4.9)	(11.6)		
144	19.0	20.0	22.5	30.0	12.0	39.0	15.5	44.0		
	(5.8)	(6.1)	(6.9)	(9.1)	(3.7)	(11.9)	(4.7)	(13.4)		
164	22.5	21.0	27.5	31.0	13.0	42.0	18.0	48.0		
	(6.9)	(6.4)	(8.4)	(9.4)	(4.0)	(12.8)	(5.5)	(14.6)		
200	27.5	25.0	31.5	35.0	14.0	45.0	21.0	53.0		
	(8.4)	(7.6)	(9.6)	(10.7)	(4.3)	(13.7)	(6.4)	(16.2)		
237	25.0	27.0	29.5	38.0	13.0	47.0	19.0	55.0		
	(7.6)	(8.2)	(9.0)	(11.6)	(4.0)	(14.3)	(5.8)	(16.8)		
285	26.0	29.0	32.0	40.0	15.0	50.0	21.0	60.0		
	(7.9)	(8.8)	(9.8)	(12.2)	(4.6)	(15.2)	(6.4)	(18.3)		
317	30.0	34.0	36.0	47.0	18.0	55.0	24.0	66.0		
	(9.1)	(10.4)	(11.00	(14.3)	(5.5)	(16.8)	(7.3)	(20.1)		
367	35.5	39.0	41.0	52.0	20.0	59.0	28.0	71.0		
	(10.8)	(11.9)	(12.5)	(15.8)	(6.1)	(18.0)	(8.5)	(21.6)		
495	36.5	42.0	43.5	57.0	24.0	65.0	30.0	76.0		
	(11.1)	(12.8)	(13.3)	(17.4)	(7.3)	(19.8)	(9.1)	(23.2)		
585	42.5	45.0	46.5	60.0	26.0	70.0	34.0	78.0		
	(13.0)	(13.7)	(14.2)	(18.3)	(7.9)	(21.3)	(10.4)	(23.8)		
700	48.0	46.0	53.0	63.0	28.0	75.0	38.0	87.0		
	(14.6)	(14.0)	(16.2)	(19.2)	(8.5)	(22.9)	(11.6)	(26.5)		

D05580

• • • • • •	.9					
°F	150	160	170	180	190	200
(°C)	(66)	(71)	(77)	(82)	(88)	(93)
PSI	—	—	_	_	—	—
(kPa)	—	—	—	—	—	—
or	1.32	1.27	1.23	1.18	1.14	1.09
°F	210	219	227	239	250	259
(°C)	(99)	(104)	(108)	(115)	(121)	(126)
PSI	—	2	5	10	15	20
(kPa)	—	(13.8)	(34.5)	(68.9)	(103.4)	(137.9)
Correction Factor			0.97	0.94	0.89	0.86
°F	267	280	287	298	307	320
(C°)	(131)	(138)	(142)	(148)	(153)	(160)
PSI	25	35	40	50	60	75
(kPa)	(172.4)	(241.3)	(275.8)	(344.7)	(413.6)	(517.1)
Correction Factor			0.76	0.73	0.70	0.69
	(°C) PSI (kPa) or °F (°C) PSI (kPa) or °F (C°) PSI (kPa)	°F 150 (°C) (66) PSI — (kPa) — or 1.32 °F 210 (°C) (99) PSI — (kPa) — (kPa) — (kPa) — (kPa) — (c°) (131) PSI 25 (kPa) (172.4)	°F 150 160 (°C) (66) (71) PSI — — (kPa) — — or 1.32 1.27 °F 210 219 (°C) (99) (104) PSI — 2 (kPa) — (13.8) or 1.05 1.00 °F 267 280 (C°) (131) (138) PSI 25 35 (kPa) (172.4) (241.3)	(°C) (66) (71) (77) PSI — — — (kPa) — — — or 1.32 1.27 1.23 °F 210 219 227 (°C) (99) (104) (108) PSI — 2 5 (kPa) — (13.8) (34.5) or 1.05 1.00 0.97 °F 267 280 287 (C°) (131) (138) (142) PSI 25 35 40 (kPa) (172.4) (241.3) (275.8)	°F 150 160 170 180 (°C) (66) (71) (77) (82) PSI — — — — (kPa) — — — — or 1.32 1.27 1.23 1.18 °F 210 219 227 239 (°C) (99) (104) (108) (115) PSI — 2 5 10 (kPa) — (13.8) (34.5) (68.9) or 1.05 1.00 0.97 0.94 °F 267 280 287 298 (C°) (131) (138) (142) (148) PSI 25 35 40 50 (kPa) (172.4) (241.3) (275.8) (344.7)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 19 - Mounting Height Correction Factors

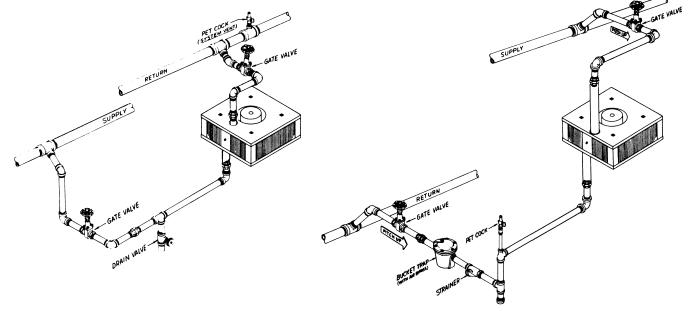
To meet OSHA requirements, units mounted lower than 8 feet from the floor must be equipped with an OSHA fan guard.

PIPING

To provide proper coil operation, follow all piping recommendations listed in this manual.

Threaded pipe headers are provided on all Vertical Units for piping connections. See Figure 5. Connections are given in Figures 3 and 4 and Tables 1 and 2.

Follow standard practices and codes when installing the piping. Provide swing joints for expansion purposes, unions and shut-off valves for servicing purposes and as illustrated in Figures 6 through 9, valves and traps for control purposes. Use 45 degree angle run-offs from all supply and return mains.


Figure 6 – Forced Hot Water

Dirt pockets should be the same pipe size as the return tapping of the unit heater. Also, pipe size in the branchoff should be the same size as the tapping in the traps. Beyond the trap, the return lateral pipe should be increased one size up to the return main.

Properly support all piping to unit! Do not allow piping to place a strain on the coil or unit. Noise or coil failure may occur.

It is assumed that the type of system to be used has been selected by design engineer. The sketches shown are for different type of steam systems or hot water systems. For sizing of piping, traps, filter, etc., consult ASHRAE guides of the manufacturer's literature on these products.

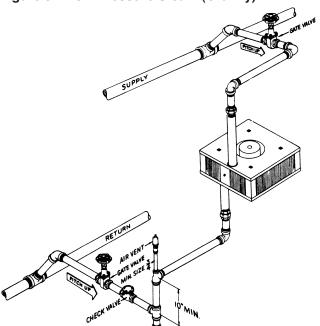
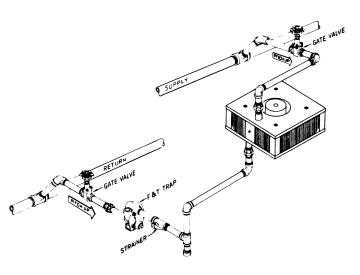



Figure 9 – Low Pressure Vapor or Vacuum

ravity)

ELECTRICAL CONNECTIONS

HAZARDOUS VOLTAGE! disconnect ALL ELECTRIC POWER INCLUDING REMOTE DISCONNECTS BEFORE SERVICING. Failure to disconnect power before servicing can cause severe personal injury or death.

Standard units are shipped for use on 115 volt, 60 hertz single phase electric power. The motor nameplate and electrical rating on the transformer should be checked before energizing the unit heater electrical system. All external wiring must conform to the latest edition of the National Electric Code, ANSI/NFPA No. 70 and applicable current local codes; in Canada, to the Canadian Electrical Code, Part 1 CSA Standard C22.1. The short-circuit current rating (SCCR) for this unit is 5kA.

AWARNING

A CAUTION Do not use any tools (i.e. screwdriver, pliers, etc.) across the terminals to check for power. Use a voltmeter.

It is recommended that the electrical power supply to each unit heater be provided by a separate, fused and permanently live electrical circuit. A disconnect switch of suitable electrical rating for each unit heater should be located as close to the controls as possible. Each unit heater must be electrically grounded in accordance with the latest edition of the National Electric Code, ANSI/NFPA No. 70 or and applicable current local codes; In Canada to the Canadian Electrical Code, Part 1, CSA C22.1. Sample wiring connections are depicted in Figures 14 through 24.

OPERATION

Most basic unit heater systems are controlled by a room thermostat. Locate thermostat on inner wall or column so that optimum control could be obtained for that area. Set thermostat for desired temperature.

On steam systems a low limit may be used to prevent fan from blowing cold air unless the heater has steam passing through the coil.

Small hot water systems could have the circulating pump controlled directly by the room thermostat. On large systems, zone valves could be used to control the individual unit heater where constant water circulation is used on the main system.

THERMOSTAT WIRING AND LOCATION

NOTICE: The thermostat must be mounted on a vertical vibration-free surface free from air currents and in accordance with the furnished instructions.

Mount the thermostat approximately 5 feet (1.5 m) above the floor in an area where it will be exposed to a free circulation of average temperature air. Always refer to the thermostat instructions as well as our unit wiring diagram and wire accordingly. Avoid mounting the thermostat in the following locations:

- 1. Cold areas Outside walls or areas where drafts may affect the operation of the control.
- 2. Hot areas Areas where the sun's rays, radiation, or warm air currents may affect control operation.
- 3. Dead areas Areas where air cannot circulate freely, such as behind doors or in corners.

NOTICE: For all wiring connections, refer to the wiring diagram on the motor nameplate (refer to pages 21 and 22). Should any original wire supplied with the heater have to be replaced, it must be replaced with wiring material having a temperature rating of at least 105° C.

MOTORS

The standard 115/1/60 motors provided on Vertical Unit Heaters are totally enclosed, Class "B" insulated and have built-in thermal overload protection.

Vertical Units 40 through 72 use sleeve type bearings. Vertical Units 125 through 285 use permanent split capacitor motors with ball bearings.

All sleeve bearing motors have oil holes to allow lubrication. Ball bearing motors are permanently lubricated although some three phase or special motors have removable plugs which will allow field installation of grease fittings.

The standard 40 through 104 motors can be converted to variable speed operation with the addition of the solid state speed control.

See Figures 10 through 24 for typical wiring diagrams.

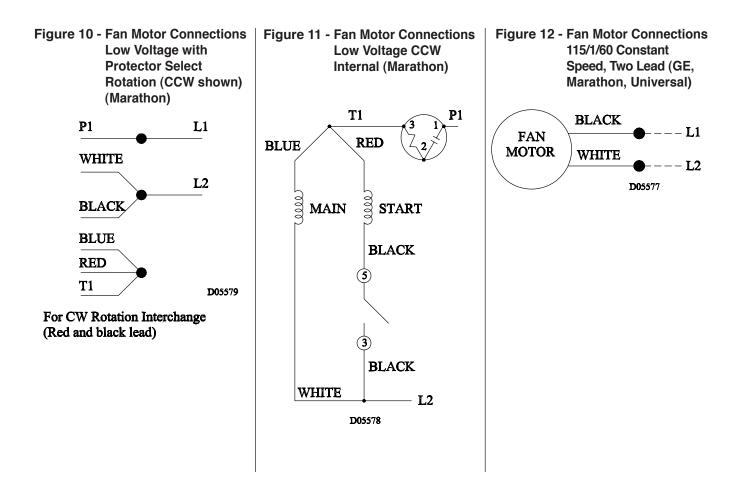
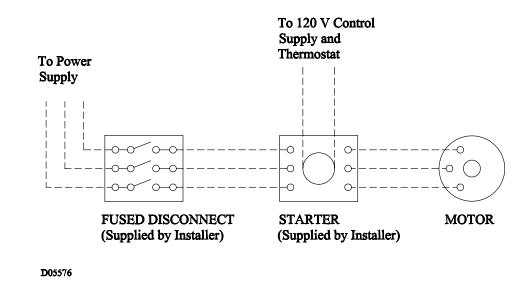
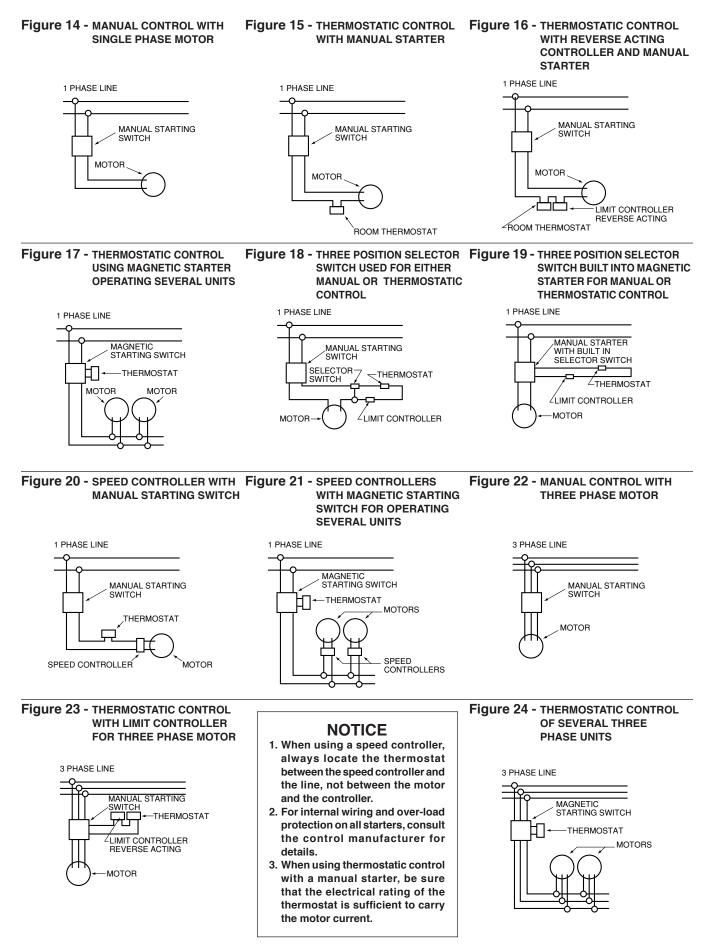
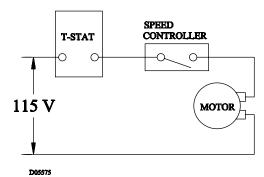




Figure 13 - Fan Motor Connections 3 Phase Wiring

NOTE: Motors without overload protection must be installed with the optional manual starter or other field provided overload protection. See Motor Data section to identify motors without overload protection.

WIRING INSTALLATION



VARIABLE SPEED CONTROL

115 Volt Only (optional)

The Solid State speed controller may be installed at any convenient location and is suitable for surface or flush type mounting. A standard electrical single or double gang wall box is recommended as in Figure 25.

Figure 25 - Wiring Diagram of Speed Control Installation

Installation procedure:

- 1. Attach the control's leads to the electrical leads in the control box using wire nuts. The speed control is to be wired in series with the motor. See wiring diagram in Figure 25.
- 2. Make certain wire nuts are tight with no copper wire being exposed.
- 3. Place wires and wire nuts back into box allowing room for the control to fit in box also.
- 4. Mount speed control to box using number 6 flathead screws provided.

Setting the control:

- 1. Turn the control shaft fully clockwise. If the motor is not running at the desired low speed, adjust the trim on the face of the control for low speed setting using a small screwdriver.
- 2. Rotate the control shaft counter clockwise. The speed will increase smoothly from minimum to maximum and then switch off.

VERTICAL LOUVER CONE DIFFUSER (optional)

Washers and bolts are provided with each louver cone diffuser. Attach the diffuser to the bottom of the unit heater as shown in Figure 26. Mounting holes are provided in the unit base plate.

Adjust the diffuser to provide the desired air pattern.

NOTICE: To meet ETL and OSHA requirements, units mounted below 8 feet (2.4m) must be equipped with an OSHA fan guard. Vertical unit heaters can support either an OSHA fan guard or the Louvered Cone Diffuser - both items cannot be installed on the same unit.

Figure 26 - Louver Cone Diffuser Attached to Vertical Unit Heater

STRAP-ON WATER CONTROL

A SPDT strap-on type hot water control with 100° to 240°F (38 to 116°C) rated at 10 amps at 120V is also available. Control can be used for direct or reverse acting applications as high or low limit.

STEAM PRESSURE CONTROL

SPDT switch opens on a rise in pressure. Control is automatically reset, has a range of 0 to 15 PSI (0 to 103 kPa) and has an adjustable differential. **Other actions, ranges, circuits and manual reset models are available on request.**

THERMOSTATS

Line voltage wall thermostats are in stock for immediate shipment. All models are SPST with bimetal thermometer, knob-type set point adjustment, 40 to 90°F (5 to 30°C) range and selector switches. Standard duty models with "off-auto" and a heavy duty model with "auto-offfan" switching are available. Other models available on request. Plastic tamperproof one size fits all thermostat guards are also available.

WALL MOUNTED SPEED CONTROLLERS

Motors up to and including 1/8 HP (115V) can be operated at reduced speeds by addition of optional speed controller. Controller is 5 amps, pre-set at factory for maximum and minimum speeds, with intermediate speeds infinitely controllable. All 1/3, 1/2 HP and 230V motors operate only at rated speed and CFM – See Charts.

MANUAL STARTERS

Single and three-phase models are available. Standard models are single-speed, toggle-operated, NEMA Type 1 and are surface-mounted. **Note: While these manual starters can be used with explosion-proof motors, they do not meet requirements for use in explosionproof applications.**

NOTICE: When using electrical accessories, always refer to the accessory manufacturer's installation manual for proper use, location and wiring instructions.

MAINTENANCE

AWARNING Open all disconnect switches and secure in that position before servicing unit. Failure to do so may result in personal injury or death from electrical shock.

ACAUTION All rotating fans must stop before servicing to avoid serious injury to fingers and hands.

MOTOR LUBRICATION

Sleeve Bearings

Motors with oilers or oil holes are lubricated before shipment with a good grade of electric motor oil. Refill when necessary, with the motor at stand-still, until oil reaches the proper level.

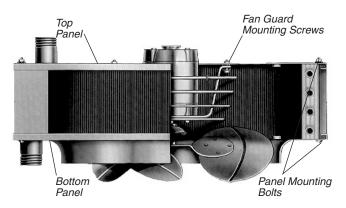
Use SAE 20W non-detergent oil for motors operating in ambient temperatures of 32°F to 100°F (0°C to 38°C). Above 100°F (38°C), use an SAE 30W to SAE 50W non-detergent oil. Below 32°F (0°C), a SAE 10W non-deterent oil will be required.

The frequency of oiling will depend upon operating conditions and length of running time. Inspect the oilers or oil holes when cleaning the unit. If the unit has a fractional horse-power motor, lubricate at least once a year. Under high ambient conditions or constant fan operation, fractional horse-power motors should be lubricated every 90 days. On those motors without oilers or oil holes, follow the instructions given on the motor nameplate.

Ball Bearings

Ball bearing motors are pre-lubricated and normally not equipped with grease fittings. However, motors are equipped with removable grease plugs to allow installation of grease fittings if desired by the owner.

Motor manufacturers do not recommend or require on the job lubrication of ball bearing motors. If on the job lubrication is required by the owner, use the following procedure: With the motor at a stand-still, remove the vent and grease plugs. Install grease fitting and add grease sparingly. Remove the old grease from the vent relief chamber. Operate the motor a few minutes before reinstalling the vent plug to allow excess grease to escape. If there is evidence of grease working out around the motor shaft, less grease should be added and the greasing periods lengthened. If grease continues to appear, take the motor to the motor manufacturer's authorized service station for repair.


NOTICE: Consult local motor manufacturer's service facility for information on type of grease and oil to be used.

FAN AND MOTOR ASSEMBLY

For cleaning or maintenance purposes, the fan and motor assembly may be removed easily from the Unit Heater. The motor is attached to the fan guard which is, in turn, mounted to the top or back panel of the unit as shown in Figure 27.

On Vertical Units, reach up through the fan and remove the fan guard mounting screws. Lower the motor, fan and fan guard assembly down through the fan outlet. If desired, the top and bottom panels may be removed from the coil by taking out the four panel mounting bolts. See Figure 27.

Figure 27 – Cross Section View

CLEANING THE UNIT

The unit casing, fan, diffuser and coil should be cleaned thoroughly once a year. Coil heat transfer efficiency depends on cleanliness. The following recommended procedures may be performed when lubricating the motor and cleaning the coil.

- 1. Wipe all excess lubricant from the motor, fan and casing. Clean the motor thoroughly. A dirty motor will run hot and eventually cause internal damage.
- 2. Clean the coil:
 - a) Loosen the dirt with a brush on the fan side of the coil. Operate the motor allowing the fan to blow the loosened dirt through the unit.
 - b) Use air pressure or steam on the side of the coil away from the fan.

NOTICE: A piece of cheesecloth or a burlap bag may be used to collect the large particles during the cleaning process.

- 3. Clean the casing, fan blades, fan guard and diffuser using a damp cloth. Any rust spots on the casing should be cleaned and repainted.
- 4. Tighten the fan guard, motor frame and fan bolts. Check the fan for clearance in the panel orifice and free rotation.

SYMPTOMS	POSSIBLE CAUSE(S)	CORRECTIVE ACTION
A. Leaking coil.	 Frozen coil. Defective coil. Corrosion. Leak in joint. 	 Replace. Replace. Replace Braze joint if joint is exposed where leak has occurred.
B. Poor output on steam.	 Check for air in coil. Lint on coil fins. 	 Repair or replace thermostatic air vent. Clean coil and fins. Check filter and clean.
C. Poor output on steam or hot water.	 No circulation of water through coil. Short cycling of motor. Backward rotating motor. 	 Check circulation pump. Check for blocked tubes. Check voltage and correct. Check for linted coil and clean. Check for defective overload and repair or replace motor. On single phase motor replace motor. On three phase motor, reverse two leads to change rotation.
D. Noisy or vibrating unit.	 Damaged fan blade. Dirty fan blade. 	 Change fan blade. Clean fan blade.

HOW TO ORDER REPLACEMENT PARTS

Please send the following information to your local representative; If further assistance is needed, contact the manufacturer's customer service department.

- Model number
- Serial Number (if any)
- Part description and Number as shown in the Replacement Parts Catalog.

LIMITED WARRANTY

VERTICAL STEAM & HOT WATER UNIT HEATERS

The Manufacturer warrants to the original owner at the original installation site that the Vertical Steam and Hot Water Unit Heaters (the "Product") will be free from defects in material and workmanship for a period not to exceed one (1) year from startup or eighteen (18) months from date of shipment from the factory, whichever occurs first. If upon examination by the Manufacturer the Product is shown to have a defect in material or workmanship during the warranty period, the Manufacturer will repair or replace, at its option, that part of the Product which is shown to be defective.

This limited warranty does not apply:

- (a) if the Product has been subjected to misuse or neglect, has been accidentally or intentionally damaged, has not been installed, maintained or operated in accordance with the furnished written instructions, or has been altered or modified in any way.
- (b) to any expenses, including labor or material, incurred during removal or reinstallation of the defective Product or parts thereof.
- (c) to any workmanship of the installer of the Product.

This limited warranty is conditional upon:

- (a) shipment, to the Manufacturer, of that part of the Product thought to be defective. Goods can only be returned with prior written approval from the Manufacturer. All returns must be freight prepaid.
- (b) determination, in the reasonable opinion of the Manufacturer, that there exists a defect in material or workmanship.

Repair or replacement of any part under this Limited Warranty shall not extend the duration of the warranty with respect to such repaired or replaced part beyond the stated warranty period.

THIS LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, AND ALL SUCH OTHER WARRANTIES, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY DISCLAIMED AND EXCLUDED FROM THIS LIMITED WARRANTY. IN NO EVENT SHALL THE MANUFACTURER BE LIABLE IN ANY WAY FOR ANY CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OF ANY NATURE WHATSOEVER, OR FOR ANY AMOUNTS IN EXCESS OF THE SELLING PRICE OF THE PRODUCT OR ANY PARTS THEREOF FOUND TO BE DEFECTIVE. THIS LIMITED WARRANTY GIVES THE ORIGINAL OWNER OF THE PRODUCT SPECIFIC LEGAL RIGHTS. YOU MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY BY EACH JURISDICTION.

In the interest of product improvement, we reserve the right to make changes without notice.

OSHA Fan Guard/Louver Cone Diffuser Installation Detail

The figures below show how both the OSHA Fan Guard and the Louver Cone Diffuser are installed on the Vertical Steam and Hot Water Unit Heater. Figures 28 and 29 detail how the louver cone diffuser and OSHA guard are attached to the unit. Figures 30 and 31 show full views of the vertical steam and hot water unit with a Louver Cone Diffuser and OSHA Fan Guard attached.

A WARNING Do not mount either the Louver Cone Diffuser or OSHA Fan Guard while unit is in operation or severe personal injury may occur. Disconnect all power supplies to the unit before installing the Louver Cone Diffuser or OSHA Fan Guard. NOTICE: To meet ETL and OSHA requirements, units mounted below 8 feet (2.4m) must be equipped with an OSHA fan guard. Vertical unit heaters can support either an OSHA fan guard or the Louvered Cone Diffuser - both items cannot be installed on the same unit.

The same screws and washers are provided with both the OSHA fan guard and Louver Cone Diffuser. The screws and washers are used in conjunction with the Nutserts to support the wire guard or diffuser to the orifice panel (bottom of vertical unit).

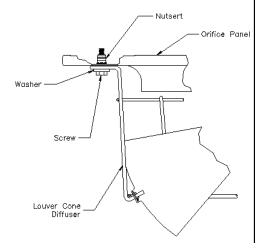


Figure 28 – Louver Cone Diffuser

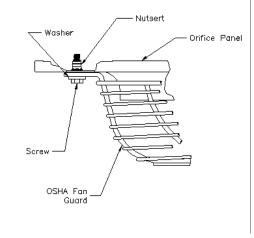


Figure 30 – Vertical Unit with Louver Cone Diffuser

Figure 29 – OSHA Fan Guard

EQUIPMENT START-UP

Customer

_____ Job Name & Number _____

PRE-INSPECTION INFORMATION

With power and water/steam off.

Type of Equipment:		Uni	it Heater						
Serial Number			Mode						
Name Plate Voltage:		Name Plate Amperage:							
		Steam	Hot Water	Rating:	BTU @°F				
					kw @ °C				
	Are all panels	in place?							
	Has the unit s	uffered any ex	ternal damage?	Damage _					
	Does the pipir	ng and electric	wiring appear to	be installed in a	a professional manner?				
	Has the piping	and electric l	been inspected by	the local author	ority having jurisdiction?				
	Is the supply p	properly sized	for the equipment	?					
	Were the insta	allation instruc	tions followed whe	en the equipme	nt was installed?				
	Have all field i	nstalled contro	ols been installed?	2					
					, contact your wholesaler o I the operation of this equip	,			

FAN With power on

- Check voltage L1 ____ L2 ____ L3 ____
- Check fan rotation.
- Check motor amps L1 ____ L2 ____ L3 ____